USACO section1.4.1

1.

因为只有4个方块,所以枚举每个方块的选择顺序和放置方向(横放还是纵放),放置方式只有题目给出的6中基本模式,分别算出不同模式下最小的面积,更新最优解。

USACO section1.4.1_第1张图片

第4、5个在本质上其实是一样。如图,不同模式对应的最小面积如下:

设w1,w2,w3,w4表示4个方块的横长,h1,h2,h3,h4表示4个方块的纵长。w,h表示最小。

1:w=w1+w2+w3+w4;h=max(h1,h2,h3,h4)

2:w=max(w1+w2+w3,w4);h=max(h1,h2,h3)+h4

3:w=max(w1+w2,w3)+w4;h=max(h1+h3,h2+h3,h4)

4:w=w1+w2+max(w3,w4);h=max(h1,h3+h4,h2)

5:h=max(h1+h3,h2+h4)

对于w,我们细分为如下四种形式:

USACO section1.4.1_第2张图片

(1):h3>=h2+h4;w=max(w1,w3+w2,w3+w4)

(2):h3>h4 and h3<h2+h4;w=max(w1+w2,w2+w3,w3+w4)

(3):h4>h3 and h4<h1+h3;w=max(w1+w2,w1+w4,w3+w4)

(4):h4>=h1+h3;w=max(w2,w1+w4,w3+w4)

*:h3=h4(图中没画);w=max(w1+w2,w3+w4)

用一个数组记录最优解,最后排序输出即可。

2. 这道题真很恶心,枚举,中间还要用到dfs。还有六种情况。很复杂,直接读别人的解体报告,但是两个递归函数还是不是很明白,但是知道这个函数是做什么的,为什么会这么写还是不懂。。。等以后有时间还是要做这道题。

3. 我的代码(其实是看的官方代码,然后自己写出来的。。。。),原来写的函数总是出错,后来索性重新写了一遍,把错误的也放在上边了

/*
ID: dollar4
PROG: packrec
LANG: C++
*/
#include <iostream>
#include <fstream>
#include <string>
#include <algorithm>
#include <cstring>

using namespace std;
//define const int INT_MAX = 10000;
struct Node
{
    int x, y;
} node[4],rec;
int rst[101], rstm = 10000;

void record()
{
    int m = rec.x * rec.y;
    if (m < rstm)
    {
        rstm = m;
        memset(rst, 0, sizeof(rst));
    }
    if (m == rstm)
    {
        rst[min(rec.x, rec.y)] = 1;
    }
}

/*void calculate()
{
    int i;
    rec.x = 0;
    rec.y = 0;
    for (i = 0; i < 4; i++)
    {
        rec.x += node[i].x;
        if (rec.y < node[i].y)
            rec.y = node[i].y;
    }
    record();

    rec.x = 0;
    rec.y = 0;
    rec.x = node[0].x + node[1].x + node[2].x;
    if (rec.x < node[3].x)
        rec.x = node[3].x;
    for (i = 0; i < 3; i++)
    {
        if (rec.y < node[i].y)
            rec.y = node[i].y;
    }
    rec.y += node[4].y;
    record();

    rec.x = 0;
    rec.y = 0;
    rec.x = node[0].x + node[1].x;
    if (rec.x < node[2].x)
        rec.x = node[2].x;
    rec.x += node[3].x;
    int temp = node[1].y + node[0].y;
    rec.y = node[2].y + node[1].y;
    if (temp > rec.y)
        rec.y = temp;
    if (rec.y < node[3].y)
        rec.y = node[3].y;
    record();

    rec.y = 0;
    rec.x = 0;
    rec.x = node[0].x + node[1].x + max(node[3].x, node[2].x);
    rec.y = max(max(node[2].y + node[3].y, node[1].y), node[0].y);
    record();

    rec.x = 0;
    rec.y = 0;
    rec.y = max(node[0].y + node[2].y, node[1].y + node[3].y);
    if (node[2].y >= node[1].y + node[3].y)
        rec.x = max(node[0].x, max(node[2].x + node[1].x, node[2].x + node[3].x));
    if (node[2].y > node[3].y && node[2].y < node[1].y + node[3].y)
        rec.x = max(max(node[0].x + node[1].x, node[1].x +node[2].x), node[2].x + node[3].x);
    if (node[3].y > node[2].y && node[3].y < node[0].y + node[2].y)
        rec.x = max(max(node[0].x + node[1].x, node[0].x + node[3].x), node[2].x + node[3].x);
    if (node[3].y >= node[0].y + node[2].y)
        rec.x = max(max(node[0].x + node[1].x, node[1].x), node[2].x + node[3].x);
    if (node[2].y == node[3].y)
        rec.x = max(node[0].x + node[1].x, node[2].x + node[3].x);
    record();
}
*/
void calculate()
{
    //case 1
    rec.x = 0;
    rec.y = 0;
    for (int i = 0; i < 4; ++i)
    {
        rec.x += node[i].x;
        if (node[i].y > rec.y) rec.y = node[i].y;
    }
    record();
    //case 2
    rec.x = 0;
    rec.y = 0;
    for (int i = 1; i < 4; ++i)
    {
        rec.x += node[i].x;
        if (node[i].y > rec.y) rec.y = node[i].y;
    }
    if (node[0].x > rec.x) rec.x = node[0].x;
    rec.y += node[0].y;
    record();
    //case 3
    rec.x = max(node[0].x+node[1].x, node[2].x)+node[3].x;
    rec.y = max(max(node[0].y, node[1].y)+node[2].y, node[3].y);
    record();
    //case 4, 5
    rec.x = node[0].x+max(node[1].x, node[2].x)+node[3].x;
    rec.y = max(max(node[0].y, node[1].y+node[2].y), node[3].y);
    record();
    //case 6
    rec.x = node[0].x+node[1].x;
    rec.y = max(node[0].y+node[2].y, node[1].y+node[3].y);
    if (node[0].y < node[1].y)
        rec.x = max(rec.x, node[2].x+node[1].x);
    if (node[0].y+node[2].y > node[1].y)
        rec.x = max(rec.x, node[2].x+node[3].x);
    if (node[1].y < node[0].y)
        rec.x = max(rec.x, node[0].x+node[3].x);
    rec.x = max(rec.x, node[2].x);
    rec.x = max(rec.x, node[3].x);
    record();
}


void rota(int a)
{
    if (a == 4)
        calculate();
    else
    {
        rota(a + 1);
        swap(node[a].x, node[a].y);
        rota(a + 1);
        swap(node[a].x, node[a].y);
    }
}

void pf(int a)
{
    if (a == 4)
        rota(0);
    else
    {
        for (int i = a; i < 4; i++)
        {
            swap(node[i], node[a]);
            pf(a + 1);
            swap(node[i], node[a]);
        }
    }
}int main()
{
    ofstream fout ("packrec.out");
    ifstream fin ("packrec.in");
    int i;
    for (i = 0; i < 4; i++)
        fin >> node[i].x >> node[i].y;
    pf(0);
    fout << rstm << endl;
    for (i = 0; i < 101; i++)
    {
        if (rst[i] == 1)
            fout << i <<  " " << rstm / i << endl;
    }
    return 0;
}

4. 官方代码

This program is straightforward, but a bit long due to the geometry involved.

There are 24 permutations of the 4 rectangles, and for each permutation, 16 different ways to orient them. We generate all such orientations of permutations, and put the blocks together in each of the 6 different ways, recording the smallest rectangles we find.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

typedef struct Rect Rect;
struct Rect {
    int wid;
    int ht;
};

Rect
rotate(Rect r)
{
    Rect nr;

    nr.wid = r.ht;
    nr.ht = r.wid;
    return nr;
}

int
max(int a, int b)
{
    return a > b ? a : b;
}

int
min(int a, int b)
{
    return a < b ? a : b;
}

int tot;
int bestarea;
int bestht[101];

void
record(Rect r)
{
    int i;

    if(r.wid*r.ht < tot)
        *(long*)0=0;

    if(r.wid*r.ht < bestarea || bestarea == 0) {
        bestarea = r.wid*r.ht;
        for(i=0; i<=100; i++)
            bestht[i] = 0;
    }
    if(r.wid*r.ht == bestarea)
        bestht[min(r.wid, r.ht)] = 1;
}

void
check(Rect *r)
{
    Rect big;
    int i;

    /* schema 1: all lined up next to each other */
    big.wid = 0;
    big.ht = 0;
    for(i=0; i<4; i++) {
        big.wid += r[i].wid;
        big.ht = max(big.ht, r[i].ht);
    }
    record(big);

    /* schema 2: first three lined up, fourth on bottom */
    big.wid = 0;
    big.ht = 0;
    for(i=0; i<3; i++) {
        big.wid += r[i].wid;
        big.ht = max(big.ht, r[i].ht);
    }
    big.ht += r[3].ht;
    big.wid = max(big.wid, r[3].wid);
    record(big);

    /* schema 3: first two lined up, third under them, fourth to side */
    big.wid = r[0].wid + r[1].wid;
    big.ht = max(r[0].ht, r[1].ht);
    big.ht += r[2].ht;
    big.wid = max(big.wid, r[2].wid);
    big.wid += r[3].wid;
    big.ht = max(big.ht, r[3].ht);
    record(big);

    /* schema 4, 5: first two rectangles lined up, next two stacked */
    big.wid = r[0].wid + r[1].wid;
    big.ht = max(r[0].ht, r[1].ht);
    big.wid += max(r[2].wid, r[3].wid);
    big.ht = max(big.ht, r[2].ht+r[3].ht);
    record(big);

    /*
     * schema 6: first two pressed next to each other, next two on top, like: 
     * 2 3
     * 0 1
     */
    big.ht = max(r[0].ht+r[2].ht, r[1].ht+r[3].ht);
    big.wid = r[0].wid + r[1].wid;

    /* do 2 and 1 touch? */
    if(r[0].ht < r[1].ht)
        big.wid = max(big.wid, r[2].wid+r[1].wid);
    /* do 2 and 3 touch? */
    if(r[0].ht+r[2].ht > r[1].ht)
        big.wid = max(big.wid, r[2].wid+r[3].wid);
    /* do 0 and 3 touch? */
    if(r[1].ht < r[0].ht)
        big.wid = max(big.wid, r[0].wid+r[3].wid);

    /* maybe 2 or 3 sits by itself */
    big.wid = max(big.wid, r[2].wid);
    big.wid = max(big.wid, r[3].wid);
    record(big);    
}

void
checkrotate(Rect *r, int n)
{
    if(n == 4) {
        check(r);
        return;
    }

    checkrotate(r, n+1);
    r[n] = rotate(r[n]);
    checkrotate(r, n+1);
    r[n] = rotate(r[n]);
}

void
checkpermute(Rect *r, int n)
{
    Rect t;
    int i;

    if(n == 4)
        checkrotate(r, 0);

    for(i=n; i<4; i++) {
        t = r[n], r[n] = r[i], r[i] = t;    /* swap r[i], r[n] */
        checkpermute(r, n+1);
        t = r[n], r[n] = r[i], r[i] = t;    /* swap r[i], r[n] */
    }
}

void
main(void)
{
    FILE *fin, *fout;
    Rect r[4];
    int i;

    fin = fopen("packrec.in", "r");
    fout = fopen("packrec.out", "w");
    assert(fin != NULL && fout != NULL);

    for(i=0; i<4; i++)
        fscanf(fin, "%d %d", &r[i].wid, &r[i].ht);

    tot=(r[0].wid*r[0].ht+r[1].wid*r[1].ht+r[2].wid*r[2].ht+r[3].wid*r[3].ht);

    checkpermute(r, 0);
    fprintf(fout, "%d\n", bestarea);
    for(i=0; i<=100; i++)
        if(bestht[i])
            fprintf(fout, "%d %d\n", i, bestarea/i);
    exit(0);
}


你可能感兴趣的:(USACO section1.4.1)