因为只有4个方块,所以枚举每个方块的选择顺序和放置方向(横放还是纵放),放置方式只有题目给出的6中基本模式,分别算出不同模式下最小的面积,更新最优解。
第4、5个在本质上其实是一样。如图,不同模式对应的最小面积如下:
设w1,w2,w3,w4表示4个方块的横长,h1,h2,h3,h4表示4个方块的纵长。w,h表示最小。
1:w=w1+w2+w3+w4;h=max(h1,h2,h3,h4)
2:w=max(w1+w2+w3,w4);h=max(h1,h2,h3)+h4
3:w=max(w1+w2,w3)+w4;h=max(h1+h3,h2+h3,h4)
4:w=w1+w2+max(w3,w4);h=max(h1,h3+h4,h2)
5:h=max(h1+h3,h2+h4)
对于w,我们细分为如下四种形式:
(1):h3>=h2+h4;w=max(w1,w3+w2,w3+w4)
(2):h3>h4 and h3<h2+h4;w=max(w1+w2,w2+w3,w3+w4)
(3):h4>h3 and h4<h1+h3;w=max(w1+w2,w1+w4,w3+w4)
(4):h4>=h1+h3;w=max(w2,w1+w4,w3+w4)
*:h3=h4(图中没画);w=max(w1+w2,w3+w4)
用一个数组记录最优解,最后排序输出即可。
2. 这道题真很恶心,枚举,中间还要用到dfs。还有六种情况。很复杂,直接读别人的解体报告,但是两个递归函数还是不是很明白,但是知道这个函数是做什么的,为什么会这么写还是不懂。。。等以后有时间还是要做这道题。
3. 我的代码(其实是看的官方代码,然后自己写出来的。。。。),原来写的函数总是出错,后来索性重新写了一遍,把错误的也放在上边了
/* ID: dollar4 PROG: packrec LANG: C++ */ #include <iostream> #include <fstream> #include <string> #include <algorithm> #include <cstring> using namespace std; //define const int INT_MAX = 10000; struct Node { int x, y; } node[4],rec; int rst[101], rstm = 10000; void record() { int m = rec.x * rec.y; if (m < rstm) { rstm = m; memset(rst, 0, sizeof(rst)); } if (m == rstm) { rst[min(rec.x, rec.y)] = 1; } } /*void calculate() { int i; rec.x = 0; rec.y = 0; for (i = 0; i < 4; i++) { rec.x += node[i].x; if (rec.y < node[i].y) rec.y = node[i].y; } record(); rec.x = 0; rec.y = 0; rec.x = node[0].x + node[1].x + node[2].x; if (rec.x < node[3].x) rec.x = node[3].x; for (i = 0; i < 3; i++) { if (rec.y < node[i].y) rec.y = node[i].y; } rec.y += node[4].y; record(); rec.x = 0; rec.y = 0; rec.x = node[0].x + node[1].x; if (rec.x < node[2].x) rec.x = node[2].x; rec.x += node[3].x; int temp = node[1].y + node[0].y; rec.y = node[2].y + node[1].y; if (temp > rec.y) rec.y = temp; if (rec.y < node[3].y) rec.y = node[3].y; record(); rec.y = 0; rec.x = 0; rec.x = node[0].x + node[1].x + max(node[3].x, node[2].x); rec.y = max(max(node[2].y + node[3].y, node[1].y), node[0].y); record(); rec.x = 0; rec.y = 0; rec.y = max(node[0].y + node[2].y, node[1].y + node[3].y); if (node[2].y >= node[1].y + node[3].y) rec.x = max(node[0].x, max(node[2].x + node[1].x, node[2].x + node[3].x)); if (node[2].y > node[3].y && node[2].y < node[1].y + node[3].y) rec.x = max(max(node[0].x + node[1].x, node[1].x +node[2].x), node[2].x + node[3].x); if (node[3].y > node[2].y && node[3].y < node[0].y + node[2].y) rec.x = max(max(node[0].x + node[1].x, node[0].x + node[3].x), node[2].x + node[3].x); if (node[3].y >= node[0].y + node[2].y) rec.x = max(max(node[0].x + node[1].x, node[1].x), node[2].x + node[3].x); if (node[2].y == node[3].y) rec.x = max(node[0].x + node[1].x, node[2].x + node[3].x); record(); } */ void calculate() { //case 1 rec.x = 0; rec.y = 0; for (int i = 0; i < 4; ++i) { rec.x += node[i].x; if (node[i].y > rec.y) rec.y = node[i].y; } record(); //case 2 rec.x = 0; rec.y = 0; for (int i = 1; i < 4; ++i) { rec.x += node[i].x; if (node[i].y > rec.y) rec.y = node[i].y; } if (node[0].x > rec.x) rec.x = node[0].x; rec.y += node[0].y; record(); //case 3 rec.x = max(node[0].x+node[1].x, node[2].x)+node[3].x; rec.y = max(max(node[0].y, node[1].y)+node[2].y, node[3].y); record(); //case 4, 5 rec.x = node[0].x+max(node[1].x, node[2].x)+node[3].x; rec.y = max(max(node[0].y, node[1].y+node[2].y), node[3].y); record(); //case 6 rec.x = node[0].x+node[1].x; rec.y = max(node[0].y+node[2].y, node[1].y+node[3].y); if (node[0].y < node[1].y) rec.x = max(rec.x, node[2].x+node[1].x); if (node[0].y+node[2].y > node[1].y) rec.x = max(rec.x, node[2].x+node[3].x); if (node[1].y < node[0].y) rec.x = max(rec.x, node[0].x+node[3].x); rec.x = max(rec.x, node[2].x); rec.x = max(rec.x, node[3].x); record(); } void rota(int a) { if (a == 4) calculate(); else { rota(a + 1); swap(node[a].x, node[a].y); rota(a + 1); swap(node[a].x, node[a].y); } } void pf(int a) { if (a == 4) rota(0); else { for (int i = a; i < 4; i++) { swap(node[i], node[a]); pf(a + 1); swap(node[i], node[a]); } } }int main() { ofstream fout ("packrec.out"); ifstream fin ("packrec.in"); int i; for (i = 0; i < 4; i++) fin >> node[i].x >> node[i].y; pf(0); fout << rstm << endl; for (i = 0; i < 101; i++) { if (rst[i] == 1) fout << i << " " << rstm / i << endl; } return 0; }
This program is straightforward, but a bit long due to the geometry involved.
There are 24 permutations of the 4 rectangles, and for each permutation, 16 different ways to orient them. We generate all such orientations of permutations, and put the blocks together in each of the 6 different ways, recording the smallest rectangles we find.
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> typedef struct Rect Rect; struct Rect { int wid; int ht; }; Rect rotate(Rect r) { Rect nr; nr.wid = r.ht; nr.ht = r.wid; return nr; } int max(int a, int b) { return a > b ? a : b; } int min(int a, int b) { return a < b ? a : b; } int tot; int bestarea; int bestht[101]; void record(Rect r) { int i; if(r.wid*r.ht < tot) *(long*)0=0; if(r.wid*r.ht < bestarea || bestarea == 0) { bestarea = r.wid*r.ht; for(i=0; i<=100; i++) bestht[i] = 0; } if(r.wid*r.ht == bestarea) bestht[min(r.wid, r.ht)] = 1; } void check(Rect *r) { Rect big; int i; /* schema 1: all lined up next to each other */ big.wid = 0; big.ht = 0; for(i=0; i<4; i++) { big.wid += r[i].wid; big.ht = max(big.ht, r[i].ht); } record(big); /* schema 2: first three lined up, fourth on bottom */ big.wid = 0; big.ht = 0; for(i=0; i<3; i++) { big.wid += r[i].wid; big.ht = max(big.ht, r[i].ht); } big.ht += r[3].ht; big.wid = max(big.wid, r[3].wid); record(big); /* schema 3: first two lined up, third under them, fourth to side */ big.wid = r[0].wid + r[1].wid; big.ht = max(r[0].ht, r[1].ht); big.ht += r[2].ht; big.wid = max(big.wid, r[2].wid); big.wid += r[3].wid; big.ht = max(big.ht, r[3].ht); record(big); /* schema 4, 5: first two rectangles lined up, next two stacked */ big.wid = r[0].wid + r[1].wid; big.ht = max(r[0].ht, r[1].ht); big.wid += max(r[2].wid, r[3].wid); big.ht = max(big.ht, r[2].ht+r[3].ht); record(big); /* * schema 6: first two pressed next to each other, next two on top, like: * 2 3 * 0 1 */ big.ht = max(r[0].ht+r[2].ht, r[1].ht+r[3].ht); big.wid = r[0].wid + r[1].wid; /* do 2 and 1 touch? */ if(r[0].ht < r[1].ht) big.wid = max(big.wid, r[2].wid+r[1].wid); /* do 2 and 3 touch? */ if(r[0].ht+r[2].ht > r[1].ht) big.wid = max(big.wid, r[2].wid+r[3].wid); /* do 0 and 3 touch? */ if(r[1].ht < r[0].ht) big.wid = max(big.wid, r[0].wid+r[3].wid); /* maybe 2 or 3 sits by itself */ big.wid = max(big.wid, r[2].wid); big.wid = max(big.wid, r[3].wid); record(big); } void checkrotate(Rect *r, int n) { if(n == 4) { check(r); return; } checkrotate(r, n+1); r[n] = rotate(r[n]); checkrotate(r, n+1); r[n] = rotate(r[n]); } void checkpermute(Rect *r, int n) { Rect t; int i; if(n == 4) checkrotate(r, 0); for(i=n; i<4; i++) { t = r[n], r[n] = r[i], r[i] = t; /* swap r[i], r[n] */ checkpermute(r, n+1); t = r[n], r[n] = r[i], r[i] = t; /* swap r[i], r[n] */ } } void main(void) { FILE *fin, *fout; Rect r[4]; int i; fin = fopen("packrec.in", "r"); fout = fopen("packrec.out", "w"); assert(fin != NULL && fout != NULL); for(i=0; i<4; i++) fscanf(fin, "%d %d", &r[i].wid, &r[i].ht); tot=(r[0].wid*r[0].ht+r[1].wid*r[1].ht+r[2].wid*r[2].ht+r[3].wid*r[3].ht); checkpermute(r, 0); fprintf(fout, "%d\n", bestarea); for(i=0; i<=100; i++) if(bestht[i]) fprintf(fout, "%d %d\n", i, bestarea/i); exit(0); }