- 机器学习-------数据标准化
罔闻_spider
数据分析算法机器学习人工智能
什么是归一化,它与标准化的区别是什么?一作用在做训练时,需要先将特征值与标签标准化,可以防止梯度防炸和过拟合;将标签标准化后,网络预测出的数据是符合标准正态分布的—StandarScaler(),与真实值有很大差别。因为StandarScaler()对数据的处理是(真实值-平均值)/标准差。同时在做预测时需要将输出数据逆标准化提升模型精度:标准化/归一化使不同维度的特征在数值上更具比较性,提高分类
- ☕【Java技术指南】「Java8技术盲区」在奔向Java13的同时,也让我们仔细研究一下Stream的学习认知!
洛神灬殇
Java8的功能之最要说到Java8的技术体系中,最让人难以忘怀的功能,那非Lambda和Stream莫属了。两者结合操作,达成天作之合,有点势不可挡。它主要用于补充集合类,它的强大,相信用过它的朋友,能明显的感受到,不用使用for循环就能对集合作出很好的操作。Stream使用一种类似用SQL语句从数据库查询数据的直观方式来提供一种对Java集合运算和表达的高阶抽象。这种风格将要处理的元素集合看作
- MATLAB数据建模Week10
WinterCruel
matlab算法人工智能
MATLAB数据建模Week10拿走不谢1、某校60名学生的一次考试成绩如下:937583939185848277767795948991888683968179977875676968848381756685709484838280787473767086769089716686738094797877635355(1)计算均值、标准差、极差、偏度、峰度,画出直方图;(2)检验分布的正态性;(3
- python产生20个随机数_python随机数,python产生20个随机整数
weixin_39637614
python产生20个随机数
1从给定参数的正态分布中生成随机数当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了。这里调用了Numpy模块中的random.normal函数,由于逻辑非参简单,所有直接贴上代码如下:importnumpyasnp#定义从正态分布中获取随机数的函数defget_normal_random_number(lo
- python补集运算_Python 的集合(set)运算
weixin_39644494
python补集运算
数学里集合运算在Python语言的set数据类型中也有对应的运算。子集⊆、真子集⊂判断真子集的⊂符号,在Python语言中,对应set类型的运算表示包含的⊇符号,对应set类型的>=运算,和内置函数issuperset()A={1,2,3}B={1,2,3,4,5}B>=A#TrueB>A#TrueA>=A#TrueA>B#FalseA.issuperset(B)#FalseB.issuperse
- 【Python】set() 函数详解:集合运算、查找、去重 (附代码示例)
Avasla
Pythonpython数据分析
set函数介绍在Python中,集合(Set)是一种无序且元素唯一的数据结构。集合中的元素不能重复,即每个元素在集合中只能出现一次。集合是一种高效的查找结构。Python中的集合(set)通常是通过哈希表实现的。哈希表是一种数据结构,它使用哈希函数将键映射到存储桶(buckets)中,以便在常数时间复杂度内执行插入、删除和查找操作。换言之,无论集合中有多少个元素,查找某个元素所需的时间都是固定的,
- python集合运算_Python 的集合(set)运算
weixin_39867296
python集合运算
数学里集合运算在Python语言的set数据类型中也有对应的运算。子集⊆、真子集⊂判断真子集的⊂符号,在Python语言中,对应set类型的运算表示包含的⊇符号,对应set类型的>=运算,和内置函数issuperset()A={1,2,3}B={1,2,3,4,5}B>=A#TrueB>A#TrueA>=A#TrueA>B#FalseA.issuperset(B)#FalseB.issuperse
- 概率学 笔记一 - 概率 - 随机变量 - 期望 - 方差 - 标准差(也不知道会不会有二)
玄晓乌屋
笔记概率论机器学习
概率不用介绍,它的定义可以用一个公式写出:事件发生的概率=事件可能发生的个数结果的总数事件发生的概率=\cfrac{事件可能发生的个数}{结果的总数}事件发生的概率=结果的总数事件可能发生的个数比如一副标准的52张的扑克牌,每张牌都是唯一的,所以,抽一张牌时,每张牌的概率都是1/52。但是有人就会说了,A点明明有四张,怎么会是1/52的概率。这就需要精准的指出我们计算概率时,到底什么是样本,什么是
- Java秋招面经(网搜版)
学Java的skyyyyyyyy
秋招面经java开发语言秋招求职招聘面经
1.redis的数据结构Redis提供了多种高效的数据结构来满足不同的应用需求。主要包括字符串(String),这是最基础的数据类型,支持存储和操作各种数据;哈希(Hash),类似于键值对的集合,适合存储对象和结构化数据;列表(List),实现为双向链表,支持从两端插入和删除元素;集合(Set),存储唯一元素并支持集合运算如交集和并集;有序集合(SortedSet),每个元素都有一个分数,按分数排
- 矢量数据的空间分析——叠加分析
进击的码农设计师
叠加分析是对不同的数据进行一系列的集合运算,常用于提取要素的空间隐含信息。1.擦除分析:擦除分析是将输入要素中去除掉与擦除要素的多边形相交的部分,将输入要素处于擦除要素外部边界之外的部分输出到新要素类。打开【系统工具箱→AnalysisTools→叠加分析→擦除】工具,设置输入要素和擦除要素。2.相交分析:相交分析是对输入要素做几何交集操作,输入要素可以是各种几何类型要素(点、线、面)的组合。打开
- 中国各地级市的海拔标准差
小王毕业啦
大数据算法大数据人工智能社科数据
海拔标准差是衡量地理测量准确性的重要指标,它通过计算特定地点的海拔测量值与平均海拔之间的偏差来评估数据的可靠性。较小的标准差意味着测量结果较为一致,而较大的标准差则可能指出数据的波动性或测量误差。计算方法海拔标准差的计算遵循以下公式:\text{标准差}=\sqrt{\frac{1}{N}\sum(\text{海拔数据}-\text{平均海拔})^2}标准差=N1∑(海拔数据−平均海拔)2其中:N
- 什么是爱情
草长鸢飞又一年
什么是爱情?有很久没体会过爱情的滋味儿了。今天问一问什么是爱情!都快忘了那种感觉。什么是爱情?一千个人会有一千种答案。答案的标准差不多是大同小异,不会谬以千里之外。爱,爱她,他,它……都是爱。情,亲情,友情,付出了感情……都是情。等爱与情两者结合形成名词之后,却成了专属特指的人。亲情友情等情都是博爱之情,只有爱情是特指的个体。一心为之的个体。爱情是狭义的。是两个人之间的事。是一个人为另一个人全心投
- Numpy学习笔记(二)
海棠未语
numpy学习笔记人工智能矩阵python
目录基本运算(一)矢量和矩阵运算1、加法2、减法3、乘法4、除法5、幂运算(二)统计运算1、求和2、求平均值3、求方差4、求标准差5、求最大值6、求最小值(三)逻辑运算1、逻辑非2、逻辑与3、逻辑或4、逻辑异或(四)比较运算1、等于2、不等于3、大于4、小于5、大于等于6、小于等于(五)指数和对数运算1、指数2、自然对数3、以10为底的对数4、以2为底的对数(六)线性代数运算1、矩阵乘法2、矩阵乘
- python金融数据分析与挖掘实战 黄恒秋_金融数据分析与挖掘——股票时间序列数据处理...
weixin_39849930
黄恒秋
1、什么是时间序列分析时间序列分析(timeseriesanalysis)方法,强调的是通过对一个区域进行一定时间段内的连续观察计算,提取相关特征,并分析其变化过程。时间序列分析主要有确定性变化分析和随机性变化分析确定性变化分析:移动平均法,移动方差和标准差、移动相关系数随机性变化分析:AR、ARMA模型2、移动平均法2.1移动窗口主要用在时间序列的数组变换,不同作用的函数将它们统称为移动窗口函数
- Python相关系数导图
亚图跨际
交叉知识Python神经网络量化特征关联汽车性价比矩阵热图流行病和资产价格城镇化交通量非线性捕捉量化图像相似性神经模型
要点量化变量和特征关联绘图对比皮尔逊相关系数、斯皮尔曼氏秩和肯德尔秩汽车性价比相关性矩阵热图大流行病与资产波动城镇化模型预测交通量宝可梦类别特征非线性依赖性捕捉向量加权皮尔逊相关系数量化图像相似性Python皮尔逊-斯皮尔曼-肯德尔皮尔逊相关系数在统计学中,皮尔逊相关系数是一种用于测量两组数据之间线性相关性的相关系数。它是两个变量的协方差与其标准差乘积的比率;因此,它本质上是协方差的标准化测量,其
- 2018-10-11
蓝海_yyy
图片发自App身份证号码要设成文本型,#______18位,因为数字型的只认10个字符。图片发自App三个选项的情况要跟重复测血压的情况一样一个变量名对应一个输入框图片发自App图片发自App图片发自App上面这种年月设成数值型也可以只有数值型可以计算均值,标准差
- Python入门之Lesson3:Python数据结构详解
theoxiong
Python入门课程数据结构python算法
目录前言一.列表(List)1.创建列表2.访问和修改元素3.列表的常用操作1.添加元素append()insert()2.删除元素remove()delpop()3.列表切片4.列表遍历二.元组(Tuple)1.创建元组2.访问元组元素3.元组的使用场景函数的多返回值作为字典的键三.集合(Set)1.创建集合2.集合的常用操作1.添加元素2.删除元素3.集合运算四.字典1.创建字典2.访问字典3
- 数据挖掘|数据预处理|基于Python的数据标准化方法
皖山文武
数据挖掘数据建模与分析python数据挖掘开发语言
基于Python的数据标准化方法1.z-score方法2.极差标准化方法3.最大绝对值标准化方法在数据分析之前,通常需要先将数据标准化(Standardization),利用标准化后的数据进行数据分析,以避免属性之间不同度量和取值范围差异造成数据对分析结果的影响。1.z-score方法Z-score方法是基于原始数据的均值和标准差来进行数据标准化的,处理后的数据均值为0,方差为1,符合标准正态分布
- 深度分析 | 2024年四川大学信息资源管理考研初试成绩数据分析
是希望
川大667信息管理导论川大972信息检索信息资源管理复试数据分析667972四川大学考研复试考研成绩
摘要本文深入分析了2024年四川大学信息资源管理考研复试成绩,提供了关于考生成绩分布、各科目成绩表现以及科目成绩与总分之间的相关性的详细见解。分析显示,复试考生的平均总分为380.63分,标准差为12分,反映出成绩分布相对集中且波动适中。特别地,专业课972与总分的相关性最高,达到了0.82,明显影响了考生的总分表现。此外,通过比较高分组和低分组的表现,我们发现专业课成绩是区分高低分考生的关键因素
- 【基于PSINS】误差计算函数
Evand J
PSINS笔记笔记
输入真值(参考值)、对比量、待比较值,输出误差的最大值、平均值、标准差的函数程序源码function[err]=EV_error_output(out_flag,avp_flag,avp,varargin)%draw_flag:以字符串的形式输入绘图的数据,eg:["EKF","UKF"]%avp:基准%avp_:用于对比的加速度、速度、位置%avp_flag:选择输出的是a、v、p中的哪一个,e
- camera常见名词缩写
窝窝蜗牛
CC,colorconversion,色彩转换CC,colorcorrection,色彩矫正CE,chromaenhancement,色度增强SNR,signal-to-noiseratio,信噪比SNR,skinnoisereduce,肤色降噪STD,standarddeviation,标准差OIS,opticalimagestabilization光学稳像PDAF,phasedetection
- 中科星图——影像卷积核函数Kernel之gaussian高斯核函数核算子、Laplacian4核算子和square核算子等的分析
此星光明
中科星图计算机视觉人工智能深度学习核函数高斯卷积云计算
简介高斯核函数是图像处理中常用的一种卷积核函数。它是一种线性滤波器,可以实现图像的平滑处理。在图像处理中,高斯核函数的卷积操作可以用于去噪、平滑和模糊等任务。高斯核函数的定义可以表示为一个二维高斯分布函数,表达式如下:G(x,y)=(1/(2*pi*sigma^2))*exp(-(x^2+y^2)/(2*sigma^2))其中,x和y表示图像中的像素位置,sigma表示高斯分布的标准差。高斯核函数
- Latex基础语法简记
yeshan333
随笔
文章目录公式插入方式大括号的使用符号表运算符表关系运算符集合运算符对数运算符三角运算符微积分运算符逻辑运算符其它符号戴帽和连线符号箭头符号矩阵基本语法进阶希腊字母表杂项综合运用示范参考公式插入方式行内公式可用\(...\)或$...$例如$f(x)=x^2$,显示为$f(x)=x^2$独立公式(单独另起一行,公式会居中),使用$$...$$或\[...\]例如:$$\int_a^b{f(x)dx}
- Echarts绘制任意数据的正态分布图
tsunami_______
Vueecharts前端javascript
一、什么是正态分布正态分布,又称高斯分布或钟形曲线,是统计学中最为重要和常用的分布之一。正态分布是一种连续型的概率分布,其概率密度函数(ProbabilityDensityFunction,简称PDF)可以通过一个平均值(μ,mu)和标准差(σ,sigma)来完全描述。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准
- 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(5)数据理解
giszz
学习笔记人工智能人工智能学习笔记
数据理解,就是理解数据。理解数据,就是观察数据,获得更多数据的特点。这里要对数据进行一些处理。查看样本数据的均值、最大值、最小值、数量、标准差等;查看更详细的数据分位数信息。通过观察加深数据理解,为建模做准备。延伸学习:数据理解:深入探索与分析在人工智能和机器学习的项目中,数据理解是至关重要的一步。它涉及到对数据集的深入探索和分析,以揭示数据的内在特性、模式、异常值以及潜在的问题。通过数据理解,我
- Python编程读取csv文件数据分别计算RMSE、SD、R
是筱倩阿
pythonpythonnumpy
使用Pandas和NumPy库,从CSV文件中读取数据,并对列名进行了更新。使用循环计算了三组数据的RMSE、标准差和相关系数,并将结果打印输出。其中,RMSE(RootMeanSquaredError)是衡量预测值和真实值之间误差的一种方法;SD(StandardDeviation)是预测值和真实值之间误差的标准差;R(CorrelationCoefficient)是衡量预测值和真实值之间线性关
- 抛弃for循环遍历list
BUG指挥官
java开发语言
Java8API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据。Stream使用一种类似用SQL语句从数据库查询数据的直观方式来提供一种对Java集合运算和表达的高阶抽象。filterfilter:过滤,就是过滤器,符合条件的通过,不符合条件的过滤掉//筛选出成绩不为空的学生人数count=list.stream().filter(p->null!=p.getScore()
- AcWing 1235. 付账问题(贪心)
techpupil
贪心算法
[题目概述]几个人一起出去吃饭是常有的事。但在结帐的时候,常常会出现一些争执。现在有n个人出去吃饭,他们总共消费了S元。其中第i个人带了aia_iai元。幸运的是,所有人带的钱的总数是足够付账的,但现在问题来了:每个人分别要出多少钱呢?为了公平起见,我们希望在总付钱量恰好为S的前提下,最后每个人付的钱的标准差最小。这里我们约定,每个人支付的钱数可以是任意非负实数,即可以不是1分钱的整数倍。你需要输
- R语言实战第5章:高级数据管理
亚航
本章内容数字和统计函数字符处理函数循环和条件执行自编函数数据整合与重塑5.1一个数据处理难题题目详见R语言实战第一版第86页(需要的同学,公众号私信:R语言实战。小编会发连接)5.2数值和字符处理函数数值函数(数学、统计、概率)字符处理函数5.2.1数学函数略5.2.2统计函数函数描述mean(x)平均数median(x)中位数sd(x)标准差var(x)方差mad(x)绝对中位差quantile
- Z分数标准化
草明
数据结构与算法机器学习人工智能
Z分数标准化是一种常用的数据标准化方法,用于将不同数据集的值转换为具有相同比例和零均值、标准差为1的标准正态分布。这种标准化方法对于机器学习和统计分析中的特征缩放和数据预处理非常有用。标准化的步骤如下:计算均值和标准差:对于给定的数据集,首先计算其均值(μ)和标准差(σ)。计算Z分数:对于数据集中的每个数据点Xi,使用下面的公式计算其Z分数:这样做可以将原始数据转换为以数据集均值为中心,标准差为单
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>