- 概率图模型(PGM)综述
医学影像处理
概率图模型概率图模型综述
RefLink:http://www.sigvc.org/bbs/thread-728-1-1.htmlGraphicalModel的基本类型基本的GraphicalModel可以大致分为两个类别:贝叶斯网络(BayesianNetwork)和马尔可夫随机场(MarkovRandomField)。它们的主要区别在于采用不同类型的图来表达变量之间的关系:贝叶斯网络采用有向无环图(DirectedAc
- 【机器学习】近似推断的基本概念以及变分贝叶斯的基本概念
Lossya
机器学习人工智能python贝叶斯网络变分贝叶斯近似推断
引言近似推断是处理大规模或复杂概率图模型时常用的一种方法,特别是在精确推断变得不可行或不实际的情况下文章目录引言一、近似推断1.1常见的近似推断方法1.1.1采样方法(SamplingMethods)1.1.1.1马尔可夫链蒙特卡洛(MCMC)1.1.1.2重要性采样(ImportanceSampling)1.1.1.3蒙特卡洛模拟(MonteCarloSimulation)1.1.2变分推断(V
- 机器学习---概率图模型(概率计算问题)
三月七꧁ ꧂
机器学习机器学习人工智能
1.直接计算法给定模型和观测序列,计算观测序列O出现的概率。最直接的方法是按概率公式直接计算.通过列举所有可能的长度为T的状态序列,求各个状态序列I与观测序列的联合概率,然后对所有可能的状态序列求和,得到。状态序列的概率是对固定的状态序列,观测序列的概率是。,O和I同时出现的联合概率为。然后,对所有可能的状态序列I求和,得到观测序列O的概率,即但是,利用公式计算量很大,是阶的,这种算法不可行。2.
- 机器学习---学习与推断,近似推断、话题模型
三月七꧁ ꧂
机器学习机器学习学习人工智能
1.学习与推断基于概率图模型定义的分布,能对目标变量的边际分布(marginaldistribution)或某些可观测变量为条件的条件分布进行推断。对概率图模型,还需确定具体分布的参数,称为参数估计或学习问题,通常使用极大似然估计或后验概率估计求解。单若将参数视为待推测的变量,则参数估计过程和推断十分相似,可以“吸收”到推断问题中。假设图模型所对应的变量集x={x1,x2,···,xn}能分为XE
- 机器学习---概率图模型(隐马尔可夫模型、马尔可夫随机场、条件随机场)
三月七꧁ ꧂
机器学习机器学习人工智能
1.隐马尔可夫模型机器学习最重要的任务是根据已观察到的证据(例如训练样本)对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型(probabilisticmodel)提供了一种描述框架,将描述任务归结为计算变量的概率分布,在概率模型中,利用已知的变量推测未知变量的分布称为“推断(inference)”,其核心在于基于可观测的变量推测出未知变量的条件分布。生成式:计算联合分布(,,),判别式:
- 白铁时代 —— (监督学习)原理推导
人生简洁之道
2020年-面试笔记人工智能
来自李航《统计学习方法》文章目录-1指标相似度0概论1优化类1.1朴素贝叶斯1.2k近邻-kNN1.3线性判别分析二分类LDA多分类LDA流程LDA和PCA的区别和联系1.4逻辑回归模型&最大熵模型逻辑回归最大熵模型最优化1.5感知机&SVM感知机SVM线性可分SVM线性不可分SVM对偶优化问题&非线性SVM序列最小优化算法SMO1.7概率图模型EM算法EM算法的导出和流程应用举例:高斯混合模型(
- NLP系列学习:CRF条件随机场(1)
云时之间
大家好,今天让我们来看看条件随机场,条件随机场是一项大内容,在中文分词里广泛应用,因为我们在之前的文章里将概率图模型和基本的形式语言知识有所了解,当我们现在再去学习条件随机场会容易比较多(在动笔写这篇文章前我也翻阅了很多的博客,发现很多博主上来就讲一大堆核心公式,而之前的铺垫知识都很少提,我觉得这不太好,会让很多人一开始就懵).而我希望在我的这几篇文章尽可能的减少单纯理论知识的复述,而是通过一些实
- HMM隐马尔可夫模型和维特比算法
Y·Not·Try
NLPHMM维特比算法自然语言处理算法机器学习
前言一、HMM的构成二、HMM的基本假设1.齐次马尔可夫假设2.观测独立假设3.参数不变性假设三、HMM的参数学习(监督学习)四、参数学习的代码思路五、维特比算法六、维特比算法代码思路总结前言隐马尔可夫模型是关于时序的概率图模型,属于生成模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。隐马尔可夫模型常用来处理诸如分词,词性标注,命名
- 8、VAE:变分自编码器
O_meGa
AIGC论文笔记深度学习人工智能计算机视觉深度学习
目录一、背景与动机二、创新与卖点三、实现细节VAE模型架构损失函数VAE的背后的数学原理简易代码四、总结一、背景与动机在深度学习领域,数据的有效表示和生成模型一直是研究的重点。VAE,即变分自编码器(VariationalAuto-Encoder),正是在这种背景下应运而生的前沿技术。它结合了自编码器和概率图模型的优点,旨在解决高维复杂数据的高效表示和生成问题。VAE最想解决的问题是什么?首先是如
- 图像生成之变分自动编码器(VAE)
Wilson_Hank
机器学习人工智能
简要介绍“概率图模型+神经网络”、“EM算法、变分推断”自动编码器是一种无监督学习方法,将高维的原始数据映射到一个低维特征空间,然后从低维特征学习重建原始的数据。变分自编码器(VariationalAutoencoder,简称VAE)是一种生成模型,结合了自编码器和概率图模型的思想。VAE在建模生成模型时是显式地定义了条件概率分布,通过最大似然估计来学习生成模型的参数,使其能够生成与训练数据相似的
- 【机器学习】条件随机场
十年一梦实验室
机器学习人工智能
一、马尔可夫随机场1.1概率图模型什么是有向图模型和无向图模型?https://www.jianshu.com/p/dabbc78471d7团、极大团、最大团-简书(jianshu.com)1.2马尔可夫随机场二、条件随机场概述2.1条件随机场简介条件随机场(ConditionalRandomField,简称CRF)是一种用于序列标注(sequencelabeling)的概率模型。它是马尔可夫随机
- .【机器学习】隐马尔可夫模型(Hidden Markov Model,HMM)
十年一梦实验室
机器学习人工智能
概率图模型是一种用图形表示概率分布和条件依赖关系的数学模型。概率图模型可以分为两大类:有向图模型和无向图模型。有向图模型也叫贝叶斯网络,它用有向无环图表示变量之间的因果关系。无向图模型也叫马尔可夫网络,它用无向图表示变量之间的相关关系。概率图模型可以用于机器学习,人工智能,自然语言处理,计算机视觉,生物信息学等领域。一、马尔科夫模型随机过程马尔科夫过程马尔科夫链状态转移矩阵通过训练样本学习得到,采
- EM算法及公式推导
XI-C-Li
概率图模型算法机器学习人工智能
含隐变量的概率图模型的参数估计问题在解决含隐变量的概率图模型的参数估计问题时,一种简单的想法是取使其对数边际似然最大的作为估计的参数。为观测变量的观测数据,是一个向量,为隐变量的取值(但实际上无法观测)是一个向量,需要通过求和(积分)的形式去除。但函数中存在对数函数内部带有求和的形式,这样非常难以求导。比如在高斯混合模型中,隐变量是一维离散的变量。12......k......其中均是待估计参数,
- 模式识别与机器学习-概率图模型
Kilig*
机器学习机器学习人工智能
模式识别与机器学习-概率图模型概率图模型三大基本问题表示推断学习有向概率图模型例子三种经典的图HMMViterbi算法谨以此博客作为复习期间的记录概率图模型三大基本问题概率图模型通常涉及三个基本问题,即表示(Representation)、推断(Inference)和学习(Learning)。这三个问题是概率图模型中关键的核心概念。表示(Representation):表示问题涉及选择合适的图结构
- 【多传感器融合导航论文阅读】
今天我刷leetcode了吗
论文阅读学习方法
多传感器融合导航论文积累知识点总结因子图一致因子图文献阅读笔记[IF18.6]知识点总结因子图FactorGraph是概率图的一种,是对函数因子分解的表示图,一般内含两种节点,变量节点和函数节点。因子图存在着:两类节点:变量节点和对应的函数节点变量节点所代表的变量是函数节点的自变量。同类节点之间没有边直接相连。一致因子图一致性指的是在该框架中能够保持一致性地更新变量的值,使得整个概率图模型中的变量
- VAE变分自编码器原理推导+Python代码实现
篝火者2312
机器学习人工智能笔记python机器学习开发语言深度学习
1、前言变分自编码器是近些年较火的一个生成模型,我个人认为其本质上仍然是一个概率图模型,只是在此基础上引入了神经网络。本文将就变分自编码器(VAE)进行简单的原理讲解和数学推导。2、引入2.1、高斯混合模型生成模型,可以简单的理解为生成数据(不止,但我们暂且就这么理解它)\boxed{(不止,但我们暂且就这么理解它)}(不止,但我们暂且就这么理解它)。假如现在我们有样本数据,而我们发现这些样本符合
- 优化概率神经网络_用约束规划+概率图模型(信念传播)+神经网络端到端求解组合优化问题...
weixin_39849671
优化概率神经网络
Idea半成品,现在不做了,分享下(尾附资料库和代码)~主要技术点:用约束规划+概率图模型(信念传播)+神经网络端到端求解问题,生成一个关于变量的N*M矩阵,N是变量个数,M是变量取值集合的大小,矩阵元素代表某变量取某元素的信念,根据这个矩阵可自然读出解(如果不满足约束的情况实在太严重,就进一步加primal-dualunrolledoptimization、启发式搜索、分支定界等后处理机制):《
- 用约束规划+概率图模型(信念传播)+神经网络端到端求解组合优化问题
Monte0539
深度学习神经网络
主要技术点:用约束规划+概率图模型(信念传播)+神经网络端到端求解问题,生成一个关于变量的N*M矩阵,N是变量个数,M是变量取值集合的大小,矩阵元素代表某变量取某元素的信念,根据这个矩阵可自然读出解(如果不满足约束的情况实在太严重,就进一步加primal-dualunrolledoptimization、启发式搜索、分支定界等后处理机制):《BeliefPropagationNeuralNetwo
- 概率图模型(PGM):贝叶斯网(Bayesian network)初探
虫小宝
1.从贝叶斯方法(思想)说起-我对世界的看法随世界变化而随时变化用一句话概括贝叶斯方法创始人ThomasBayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度。1763年,民间科学家ThomasBayes发表了一篇名为《Anessaytowardssolvingaprobleminthedoctrineofchance
- 【AI】人工智能爆发推进器之变分自动编码器
giszz
人工智能学习笔记人工智能
一、变分自动编码器(VAE)变分自动编码器(VariationalAutoencoder,简称VAE)是一种生成式模型,属于深度学习领域中的一种重要技术。它通过结合深度学习和概率图模型的思想,能够学习到数据分布的潜在表示,并生成新的数据样本。变分自动编码器是一种基于变分贝叶斯方法的深度学习模型,用于学习数据分布的潜在表示。它通过最大化数据的对数似然下界(ELBO)来学习数据生成过程。VAE由两部分
- 机器学习 (第9章 概率图模型)
komjay
机器学习人工智能
一、学习目标1.学习概率图模型中两种重要的模型:贝叶斯网络和马尔科夫随机场2.学习使用概率图模型去进行实际问题的学习与推断3.学习近似推断二、贝叶斯网络概率图模型基于图,而图这种数据结果分为两种:有向图和无向图,针对有向(无环)图结构,实现的是贝叶斯网络,针对无向图,则为马尔可夫随机场。1.有向无环图根据图中每个结点不同,可提取出不同的相关结点,如以x3为例2.联合概率分布我们之所以搞出这么一个图
- Arxiv网络科学论文摘要17篇(2020-09-02)
ComplexLY
理解在线社会网络衰退动力学的理论模型;强关系对之间的内部迁移和移动通信模式;国际关系中联盟与竞争网络的结构平衡;金融网络中的或然可转换债券;当代价高昂的惩罚逐渐演变为有利时;可见度有限的多数投票模型:对滤泡的调查;基于增强学习的黑盒规避攻击进行动态图中的链路预测;基于概率图模型和递归神经网络的语义情感分析;网络增长模型中节点影响的动态;社交用户的前k位社交-空间协同参与位置选择;利用网络分析探索农
- 机器学习 | 概率图模型
西皮呦
机器学习机器学习人工智能
见微知著,睹始知终。见到细微的苗头就能预知事物的发展方向,能透过微小的现象看到事物的本质,推断结论或者结果。概率模型为机器学习打开了一扇新的大门,将学习的任务转变为计算变量的概率分布。实际情况中,各个变量间存在显式或隐式的相互依赖,如朴素贝叶斯方法直接基于训练数据去求解变量的联合概率分布在时间复杂度还是空间复杂度均是不可行、不划算的。直接基于训练数据求解变量联合概率分布困难。Probabilist
- 自然语言处理之概率图模型--预备知识
罗宇翔
概述本章将介绍一些概率论、图、信息论、马尔可夫等相关基础知识,这些知识点将会贯穿于概率图多个模型的讲解中,在相应模型篇章的开头,也会再次列出这些基础知识。概率论联合概率两个及以上随机变量image.png,可以用联合概率分布image.png描述其各个状态的概率,简称为联合概率分布。根据随机变量的不同,联合概率分布的表示形式也不同。对于离散型随机变量,联合概率分布可以以列表的形式表示,也可以以函数
- python 大数据 选题推荐
L学长
一、python毕设选题推荐以下为学长手动整理python毕业设计项目,完全可以作为当前较新的毕业设计题目选择方向,给各位同学参考项目分享,毕设指导:https://gitee.com/yaa-dc/BJH/blob/master/gg/python/README.md1基于MapReduce的气候数据的分析2基于关键词的文本知识的挖掘系统的设计与实现3基于概率图模型的蛋白质功能预测4基于第三方库
- 贝叶斯网络 (人工智能期末复习)
倒杯Whisky
人工智能人工智能贝叶斯网络D分离法条件概率表贝叶斯网络独立性
文章目录贝叶斯网络(概率图模型)定义主要考点例题-要求画出贝叶斯网络图-计算各节点的条件概率表-计算概率-分析独立性贝叶斯网络(概率图模型)定义一种简单的用于表示变量之间条件独立性的有向无环图(DAG)。主要考点给出一定表述,要求画出贝叶斯网络图;给出每个节点的条件概率表;使用贝叶斯网络计算概率;分析贝叶斯网络的独立性;例题-要求画出贝叶斯网络图臭鸡蛋(E)或灾难后动物的尸体(M)都会发出一种奇怪
- 贝叶斯网络在R语言中的应用
CodeMaven
r语言开发语言R语言
贝叶斯网络是一种概率图模型,用于建模变量之间的依赖关系。它在许多领域都有广泛的应用,包括机器学习、人工智能和统计分析等。本文将介绍如何在R语言中使用贝叶斯网络进行建模和推断,并提供相应的源代码示例。首先,我们需要安装并加载相关的R包。在R中,有几个包可以用于构建和分析贝叶斯网络,如bnlearn和gRain等。这里我们以bnlearn包为例进行说明。#安装bnlearn包install.packa
- VAE模型及pytorch实现
Miracle Fan
生成模型计算机视觉pytorch人工智能python计算机视觉深度学习
VAE模型及pytorch实现VAE模型推导部分最小化KL散度推导代码部分损失函数Encoder部分Decoder部分VAE整体架构VAE问题参考资料VAE(变分自编码器)是一种生成模型,结合了自编码器和概率图模型的思想。它通过学习数据的潜在分布,可以生成新的数据样本。VAE通过将输入数据映射到潜在空间中的分布,并在训练过程中最大化数据与潜在变量之间的条件概率来实现。其关键思想在于编码器将输入数据
- 【深度学习】概率图模型(二)有向图模型详解(条件独立性、局部马尔可夫性及其证明)
QomolangmaH
深度学习人工智能贝叶斯网络局部马尔可夫性条件独立性概率图
文章目录一、有向图模型1.贝叶斯网络的定义2.条件独立性及其证明a.间接因果关系X3→X2→X1X_3\rightarrowX_2\rightarrowX_1X3→X2→X1b.间接果因关系X1→X2→X3X_1\rightarrowX_2\rightarrowX_3X1→X2→X3c.共因关系X1←X2→X3X_1\leftarrowX_2\rightarrowX_3X1←X2→X3d.共果关系
- 【深度学习】概率图模型(一)概率图模型理论简介
QomolangmaH
深度学习深度学习概率论人工智能概率图模型贝叶斯网络马尔可夫随机场
文章目录一、概率图模型1.联合概率表2.条件独立性假设3.三个基本问题二、模型表示1.有向图模型(贝叶斯网络)2.无向图模型(马尔可夫网络)三、学习四、推断 概率图模型(ProbabilisticGraphicalModel,PGM)是一种用图结构来表示和推断多元随机变量之间条件独立性的概率模型。图模型提供了一种直观且有效的方式来描述高维空间中的概率分布,通过图结构表示随机变量之间的关系,使得模
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p