zoj2676 Network Wars (01分数规划)

一道经典的01分数规划问题,相关知识请看《最小割模型论文》。上面有完整的证明和解释。

/*****************************************
Author      :Crazy_AC(JamesQi)
Time        :2016
File Name   :
*****************************************/
// #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <sstream>
#include <string>
#include <stack>
#include <queue>
#include <deque>
#include <vector>
#include <map>
#include <set>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <climits>
using namespace std;
#define MEM(x,y) memset(x, y,sizeof x)
#define pk push_back
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> ii;
typedef pair<ii,int> iii;
const double eps = 1e-6;
const int inf = 1 << 30;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const int maxn = 110;
const int maxm = 1010;
struct Edge {
	int from, to, nxt;
	double cap;
	Edge(){}
	Edge(int from,int to,double cap,int nxt) : 
		from(from), to(to), cap(cap), nxt(nxt) {}
}edges[maxm];
int head[maxn], ecnt;
bool vis[maxn];
int dis[maxn];
bool spfa(int s,int t) {
	memset(dis, -1,sizeof dis);
	queue<int> que;
	dis[s] = 0;
	que.push(s);
	while(!que.empty()) {
		int u = que.front();
		que.pop();
		for (int i = head[u];~i;i = edges[i].nxt) {
			Edge& e = edges[i];
			if (e.cap > 0 && dis[e.to] == -1) {
				dis[e.to] = dis[u] + 1;
				que.push(e.to);
			}
		}
	}
	return dis[t] != -1;
}
int s, t;
double dfs(int u,double a) {
	if (u == t || a == 0) return a;
	double flow = 0, f;
	for (int i = head[u];~i;i=edges[i].nxt) {
		Edge& e = edges[i];
		if (dis[e.to] == dis[u] + 1 && (f = dfs(e.to, min(a, e.cap))) > 0) {
			flow += f;
			a -= f;
			e.cap -= f;
			edges[i^1].cap += f;
			return f;
			if (a <= 0) break;
		}
	}
	return flow;
}
double Dinic(int s,int t) {
	double ret = 0;
	while(spfa(s, t)) {
		ret += dfs(s, INF);
		// cout << "wocao\n";
	}
	return ret;//ret >= 0;
}
struct Item {
	int from, to;
	double cap;
}p[maxm];
int n, m;
double Getmap(double mid) {
	double sum = 0;
	ecnt = 0;
	memset(head, -1,sizeof head);
	for (int i = 1;i <= m;++i) {
		if (p[i].cap > mid) {
			edges[ecnt] = Edge(p[i].from, p[i].to, p[i].cap - mid, head[p[i].from]);
			head[p[i].from] = ecnt++;
			edges[ecnt] = Edge(p[i].to, p[i].from, p[i].cap - mid, head[p[i].to]);
			head[p[i].to] = ecnt++; 
		}else sum += (p[i].cap - mid);
	}
	return sum;//sum <= 0;
}
// void search(int u) {
// 	vis[u] = true;
// 	for (int i = head[u];~i;i=edges[i].nxt) {
// 		Edge& e = edges[i];
// 		if (e.cap > 0 && !vis[e.to]) {
// 			search(e.to);
// 		}
// 	}
// }
void bfs(int s) {
	queue<int> que;
	que.push(s);
	vis[s] = true;
	while(!que.empty()) {
		int u = que.front();que.pop();
		for (int i = head[u];~i;i=edges[i].nxt) {
			Edge& e = edges[i];
			if (e.cap > 0 && !vis[e.to]) {
				vis[e.to] = true;
				que.push(e.to);
			}
		}
	}
}
int main()
{	
	// freopen("in.txt","r",stdin);
	// freopen("out.txt","w",stdout);
	int first =1;
	while(~scanf("%d%d",&n,&m)) {
		double low = INF, high = -INF;
		for (int i = 1;i <= m;++i) {
			scanf("%d%d%lf",&p[i].from,&p[i].to,&p[i].cap);
			low = min(low, p[i].cap);
			high = max(high, p[i].cap);
		}
		s = 1, t = n;
		double mid;
		while(high - low > eps) {
			mid = (high + low) / 2.0;
			if (Getmap(mid) + Dinic(s, t) > eps) low = mid;
			else high = mid;
		}
		memset(vis, false,sizeof vis);
		bfs(1);
		// search(1);
		vector<int> vec;
		for (int i = 1;i <= m;++i) {
			if (vis[p[i].from] + vis[p[i].to] == 1 || p[i].cap <= mid)
				vec.push_back(i);
		}
		int size = (int)vec.size();
		if (!first) puts("");
		first = 0;
		printf("%d\n", size);
		for (int i = 0;i < size - 1;++i)
			printf("%d ", vec[i]);
		printf("%d\n", vec[size - 1]);
	}
	return 0;
}


你可能感兴趣的:(最小割,最大流)