Description
In this problem you have to count the number of great numbers of length n. Here a great number must have the following property:
The first line of the input file contains an integer T (T ≤ 40) which denotes the total number of test cases.The description of each test case is given below:
An integers N (1 ≤ N ≤ 40).
For each case you have to output the number of great numbers in a single line. Print the output modulo 1000007.
2 1 2
6 10
题意:求用n<=40个1-6的数字组成多少个可以整除它各个位上的数字
思路:8维DP,表示用cur个数字,数字集合是多少,还有各个数字对应的余数的情况, 最后打表输出结果
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int mod = 1000007; int dp[42][1<<6][6][6][6][6][6][6]; int ans[43] = {0, 6, 10, 33, 120, 482, 2105, 9476, 44348, 211097, 19369, 967626, 364709, 62612, 634177, 576187, 751629, 983051, 866460, 769501, 454602, 699208, 521190, 377670, 798034, 381127, 131716, 853137, 531126, 906635, 49193, 784486, 759570, 417710, 570525, 825776, 17000, 10798, 297155, 976859, 86929}; int solve(int pos , int mask, int m1, int m2, int m3, int m4, int m5, int m6) { if (pos == 0) { if ((mask & (1<<0)) && m1) return 0; if ((mask & (1<<1)) && m2) return 0; if ((mask & (1<<2)) && m3) return 0; if ((mask & (1<<3) ) && m4) return 0; if ((mask & (1<<4)) && m5) return 0; if ((mask & (1<<5) ) && m6) return 0; return 1; } int &ret = dp[pos][mask][m1][m2][m3][m4][m5][m6]; if (ret != -1) return ret ; ret = 0; for (int i = 1; i <= 6; i++) { int x1 = (m1 * 10 + i) % 1; int x2 = (m2 * 10 + i) % 2; int x3 = (m3 * 10 + i) % 3; int x4 = (m4 * 10 + i) % 4; int x5 = (m5 * 10 + i) % 5; int x6 = (m6 * 10 + i) % 6; ret += solve(pos - 1 , (mask|1<<(i-1)) , x1, x2, x3, x4, x5, x6); ret %= mod; } return ret; } int main() { /* for (int i = 1; i <= 40; i++) { memset(dp, -1, sizeof(dp)); N = i; ans[i] = solve(i, 0, 0, 0, 0, 0, 0, 0); printf("%d, ", ans[i]); } printf("\n"); */ int t, n; scanf("%d", &t); while (t--) { scanf("%d", &n); printf("%d\n", ans[n]); } return 0; }