注意到没有两条共线的线段具有公共点,没有重合的线段 说明每个十字形最多涉及一个水平线段和一个竖直线段 这说明我们可以二分了:每条线段两端砍掉delta长度后,有没有线段有公共点? 很水的扫描线吧~ 按 X 轴扫描,先把横的线段扫进去,再用竖的线段去查询 但是写法是很重要的,我说我不用线段树你信喵?我说我连离散化都不用你信喵? 只存操作(包括插入、删除、询问)真是无比的高大上,跪跪跪 还有那鬼畜的查询写法 (set).lower_bound(l)!=(set).upper_bound(r) 可以查询 [l..r] 中是否有数存在,至于为什么这样是对的而不是别的样子了,大家在纸上画画就知道了吧 其实更好理解的是 当 (set).lower_bound(l)==(set).upper_bound(r) 时, [l..r] 中一定没有数 lower_bound是为了将 l 算入 [l..r] 中,upper_bound(r) 也是为了将 r 算入 [l..r] 中 #include <iostream> #include <queue> #include <stack> #include <map> #include <set> #include <bitset> #include <cstdio> #include <algorithm> #include <cstring> #include <climits> #include <cstdlib> //#include <cmath> #include <time.h> #define maxn 300005 #define maxm 100005 #define eps 1e-10 #define mod 1000000007 #define INF 999999999 #define lowbit(x) (x&(-x)) #define mp mark_pair #define ls o<<1 #define rs o<<1 | 1 #define lson o<<1, L, mid #define rson o<<1 | 1, mid+1, R typedef long long LL; //typedef int LL; using namespace std; LL powmod(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base%mod;base=base*base%mod;b/=2;}return res;} void scanf(int &__x){__x=0;char __ch=getchar();while(__ch==' '||__ch=='\n')__ch=getchar();while(__ch>='0'&&__ch<='9')__x=__x*10+__ch-'0',__ch = getchar();} LL gcd(LL _a, LL _b){if(!_b) return _a;else return gcd(_b, _a%_b);} // head struct point { int a, b, h; }line[maxn]; struct node { int k, h, x; }op[maxn]; set<int> s; int x1[maxn], x2[maxn], y1[maxn], y2[maxn]; int n, m1, m2; void read(void) { /* scanf("%d", &n); for(int i = 1; i <= n; i++) { scanf("%d%d%d%d", &x1[i], &y1[i], &x2[i], &y2[i]); if(x1[i] == x2[i]) { if(y1[i] > y2[i]) swap(y1[i], y2[i]); } else { if(x1[i] > x2[i]) swap(x1[i], x2[i]); } } */ scanf("%d%d", &m1, &m2), n = m1+m2; for(int i = 1; i <= m1; i++) { scanf("%d%d%d", &x1[i], &y1[i], &y2[i]), x2[i] = x1[i], y2[i] += y1[i]; if(y1[i] > y2[i]) swap(y1[i], y2[i]); } for(int i = m1+1; i <= n; i++) { scanf("%d%d%d", &x1[i], &y1[i], &x2[i]), y2[i] = y1[i], x2[i] += x1[i]; if(x1[i] > x2[i]) swap(x1[i], x2[i]); } } int cmp1(node a, node b) { if(a.h == b.h) return a.k < b.k; else return a.h < b.h; } int cmp2(point a, point b) { return a.h < b.h; } bool check(int x) { m1 = m2 = 0; for(int i = 1; i <= n; i++) { if(x1[i] == x2[i]) { if(y2[i] - y1[i] >= 2*x) { op[m1].k = 1, op[m1].x = x1[i], op[m1++].h = y1[i]+x; op[m1].k = -1, op[m1].x = x1[i], op[m1++].h = y2[i]-x+1; } } else { if(x2[i] - x1[i] >= 2*x) { line[m2].a = x1[i]+x; line[m2].b = x2[i]-x; line[m2++].h = y1[i]; } } } sort(op, op+m1, cmp1); sort(line, line+m2, cmp2); s.clear(); for(int i = 0, j = 0; i < m2; i++) { while(j < m1 && line[i].h >= op[j].h) if(op[j].k == 1) s.insert(op[j++].x); else s.erase(op[j++].x); if(s.lower_bound(line[i].a) != s.upper_bound(line[i].b)) return true; } return false; } void work(void) { int bot = 1, top = 1000000000, mid, res = -1; while(top >= bot) { mid = (top + bot) >> 1; if(check(mid)) bot = mid+1, res = mid; else top = mid-1; } if(~res) printf("%d\n", res); else printf("0\n"); } int main(void) { read(); work(); return 0; }