HDU 1290:献给杭电五十周年校庆的礼物【数学】

献给杭电五十周年校庆的礼物

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9353    Accepted Submission(s): 5199


Problem Description
或许你曾经牢骚满腹
或许你依然心怀忧伤
或许你近在咫尺
或许你我天各一方

对于每一个学子
母校
永远航行在
生命的海洋

今年是我们杭电建校五十周年,这是一个值得祝福的日子。我们该送给母校一个怎样的礼物呢?对于目前的大家来说,最好的礼物当然是省赛中的好成绩,我不能参赛,就送给学校一个DOOM III球形大蛋糕吧,这可是名牌,估计要花掉我半年的银子呢。

想象着正式校庆那一天,校长亲自操刀,把这个大蛋糕分给各地赶来祝贺的校友们,大家一定很高兴,呵呵,流口水了吧...

等一等,吃蛋糕之前先考大家一个问题:如果校长大人在蛋糕上切了N刀(校长刀法极好,每一刀都是一个绝对的平面),最多可以把这个球形蛋糕切成几块呢?

做不出这个题目,没有蛋糕吃的!
为-了-母-校-,为-了-蛋-糕-(不是为了DGMM,枫之羽最会浮想联翩...),加-油-!
 

Input
输入数据包含多个测试实例,每个实例占一行,每行包含一个整数n(1<=n<=1000),表示切的刀数。
 

Output
对于每组输入数据,请输出对应的蛋糕块数,每个测试实例输出一行。
 

Sample Input
   
   
   
   
1 2 3
 

Sample Output
   
   
   
   
2 4 8
 

Author
lcy
 

由二维的分割问题可知,平面分割与线之间的交点有关,即交点决定射线和线段的条数,从而决定新增的区域数。试想在三维中则是否与平面的交线有关呢?当有n-1个平面时,分割的空间数为fn-1)。要有最多的空间数,则第n个平面需与前n-1个平面相交,且不能有共同的交线。即最多有n-1 条交线。而这n-1条交线把第n个平面最多分割成gn-1)个区域。(gn)为(1)中的直线分平面的个数)此平面将原有的空间一分为二,则最多增加gn-1)个空间。

故:f=f(n-1)+g(n-1) ps:g(n)=n(n+1)/2+1

=f(n-2)+g(n-2)+g(n-1)

……

=f(1)+g(1)+g(2)+……+g(n-1)

=2+(1*2+2*3+3*4+……+(n-1)n)/2+n-1

=(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1

=(n^3+5n)/6+1

AC—code:

#include<cstdio>
int main()
{
	int i,n,f[1005],g[1005];
	f[1]=2;
	g[1]=2;
	for(i=2;i<=1005;i++)
		g[i]=g[i-1]+i;
	for(i=2;i<=1005;i++)
		f[i]=f[i-1]+g[i-1];
	while(~scanf("%d",&n))
		printf("%d\n",f[n]);
	return 0;
}


你可能感兴趣的:(数学,HDU,杭电)