Miller_Rabin+Pollard_rho
算导上都有,贴模板啦
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const int PRIME[9]={2,3,5,7,11,13,17,19,23}; LL n,minx; LL mult(LL a,LL b,LL Mod){ LL ret = 0; for (;b>0;b>>=1){ if (b&1) ret=(ret+a)%Mod; a = (a+a)%Mod; } return ret; } LL qck(LL a,LL b,LL Mod){ LL ret = 1; for (;b>0;b>>=1){ if (b&1) ret = mult(ret,a,Mod); a = mult(a,a,Mod); } return ret; } bool WITNESS(LL x,LL n){ LL t=0, xx=n-1; while (!(xx&1)) xx>>=1, t++; LL d = qck(x,xx,n), dd; while (t--){ dd = mult(d,d,n); if (dd==1 && d!=n-1 && d!=1) return 1; d = dd; } return (d!=1); } bool Miller_Rabin(LL x){ if (x<=1) return 0; if (x==2) return 1; if (!(x&1)) return 0; for (int i=0;i<9&&PRIME[i]<x;i++) if (WITNESS(PRIME[i],x)) return 0; return 1; } LL gcd(LL a,LL b){ while (b) b^=a^=b^=a%=b; return a; } #define abss(x) ((x)>0?(x):(-(x))) LL pollard_rho(LL n,LL c){ LL i=1, k=2, x, y, d; x = y = rand()%n; for (;;i++){ x = (mult(x,x,n)+c)%n; d = gcd(abss(y-x),n); if (d!=1 && d!=n) return d; if (x==y) return n; if (i==k) y=x, k=k*2; } } void calc(LL n){ if (Miller_Rabin(n)){ minx=min(minx,n); return; } LL p = n; while (p>=n) p = pollard_rho(n,rand()%(n-1)+1); calc(p); calc(n/p); } int main(){ freopen("poj1811.in","r",stdin); freopen("poj1811.out","w",stdout); int Case; scanf("%d",&Case); while (Case--){ scanf("%lld\n",&n); minx = n+1; calc(n); if (minx==n) puts("Prime"); else printf("%lld\n",minx); } return 0; }