- P4779 【模板】单源最短路径(堆优化dijkstra)
summ1ts
一些模版算法图论最短路dijkstra堆
堆优化dijkstra,时间复杂度,我个人写习惯的模版。#includeusingnamespacestd;#definePIIpair#definefifirst#definesesecondconstintN=2e5+10;intread(){intx=0,f=1;charch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar()
- 单源最短路径 洛谷【P4779】
data_structure_wr
算法
题目描述给定一个nn个点,mm条有向边的带非负权图,请你计算从ss出发,到每个点的距离。数据保证你能从ss出发到任意点。输入格式第一行为三个正整数n,m,sn,m,s。第二行起mm行,每行三个非负整数ui,vi,wiui,vi,wi,表示从uiui到vivi有一条权值为wiwi的有向边。输出格式输出一行nn个空格分隔的非负整数,表示ss到每个点的距离。输入输出样例输入#14611222322411
- 数据结构——最短路径问题
胡牧之.
学习笔记数据结构数据结构
文章目录前言一、问题分类二、单源最短路径1.无权图(BFS)(1)问题分析(2)路径记录2.有权图(朴素DiskStra算法)(1)问题分析(2)算法介绍(3)代码实现(4)思考三、多源最短路径1.问题分析2.枚举(1)思路3.Floyd算法(1)思路分析(2)代码实现前言两个顶点之间的最短路径问题就是求一条路径可以令两顶点沿途各边权值之和最小。一、问题分类对于这个问题,可以分为两种情况:1.单源
- Python高效实现Dijkstra算法求解单源最短路径问题
清水白石008
pythonPython题库python算法网络
Python高效实现Dijkstra算法求解单源最短路径问题在Python面试中,考官通常会关注候选人的编程能力、问题解决能力以及对Python语言特性的理解。Dijkstra算法是一种经典的图算法,用于求解单源最短路径问题。本文将详细介绍如何实现Dijkstra算法,确保代码实用性强,条理清晰,操作性强。1.引言Dijkstra算法由荷兰计算机科学家EdsgerDijkstra于1956年提出,
- matlab中迪杰斯特拉算法,dijkstra算法(迪杰斯特拉算法)
肖宏辉
matlab中迪杰斯特拉算法
单源最短路径算法——Dijkstra算法(迪杰斯特拉算法)一综述Dijkstra算法(迪杰斯特拉算法)主要是用于求解有向图中单源最短路径问题.其本质是基于贪心策略的(具体见下文).其基本原理如下:(1)初始化:集合vertex_set初始为{sourc...Dijkstra【迪杰斯特拉算法】有关最短路径的最后一个算法——Dijkstra迪杰斯特拉算法是由荷兰计算机科学家迪杰斯特
- 算法分析与设计——实验5:分支限界法
阮阮的阮阮
算法分析与设计实验报告算法分支限界单源最短路径问题0-1背包问题N皇后问题c++java
实验五分支限界法一、实验目的1、理解分支限界算法的基本原理;2、理解分支限界算法与回溯算法的区别;3、能够使用分支限界算法边界求解典型问题。二、实验内容及要求实验要求:通过上机实验进行算法实现,保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告和程序文件。实验内容:1、使用分支限界算法解决单源最短路径问题。2、使用分支限界算法解决0-1背包问题。3、在N*N的棋盘上放置彼此不受攻击的N个
- 【数据结构】最短路径
游向大厂的咸鱼
浅谈C++数据结构算法
在图论中,最短路径问题是一个经典且重要的问题,它用于寻找两个顶点之间距离最短的路径。本文将详细介绍两种常用的最短路径算法——Dijkstra算法和Bellman-Ford算法的原理,并提供C语言代码示例,演示它们的实现方式及应用场景。一、Dijkstra算法Dijkstra算法是一种贪心算法,用于求解带有非负权值的加权图的单源最短路径问题。它的基本思想是,从起始顶点开始,逐步扩展已经找到的最短路径
- 0101插入排序-算法基础-算法导论第三版
gaog2zh
数据结构和算法插入排序算法基础算法导论第三版
文章目录一插入排序二循环不变式与插入排序的正确性三伪代码中的一些约定四Java代码实现插入排序结语一插入排序输入:nnn个数订单一个序列(a1,a2,⋯ ,an)(a_1,a_2,\cdots,a_n)(a1,a2,⋯,an).**输出:**输入序列的一个排列(a1′,a2′,⋯ ,an′)(a^{'}_1,a^{'}_2,\cdots,a^{'}_n)(a1′,a2′,⋯,an′),满足a1′≤
- 【备战蓝桥杯系列】单源最短路径Dijkstra算法模板
weiambt
备战蓝桥杯系列蓝桥杯算法职场和发展
Dijkstra算法模板蓝桥杯中也是会考到图论最短路的,一旦考到,基本是不会太难的,只要知道板子就基本能拿分了。两个板子如下朴素Dijkstra算法适应情况:稠密图,正权边时间复杂度O(n^2+m)intdijkst(){memset(dist,0x3f,sizeofdist);//初始化成无穷大dist[1]=0;for(inti=1;idist[j]))t=j;}st[t]=true;//将该
- 学算法要读《算法导论》吗?
方圆想当图灵
算法
大家好,我是方圆。这篇文章是我学习算法的心得,希望它能够给一些将要学习算法且准备要读大部头算法书籍的朋友一些参考,节省一些时间,也为了给经典的“黑皮书”祛魅,我觉得这些书籍在大部分互联网从业者心中已经不再是进步的阶梯,而是恐惧的阴影了,因为当一些学习路线中列出这些书目时,评论区多是调侃少是交流和讨论。在这之前我也这些书抱有读起来很困难的看法,但是在我参考过《算法导论》之后,我觉得它更像是一杯“鸡尾
- Leo赠书活动-16期 名校毕业生教材
LeoToJavaer
CSDN送书活动送书福利
Leo赠书活动-16期名校毕业生教材✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人个人主页:Leo的博客当前专栏:赠书活动专栏✨特色专栏:MySQL学习本文内容:Leo赠书活动-16期名校毕业生教材个人知识库:Leo知识库,欢迎大家访问目录Leo赠书活动-16期名校毕业生教材1.《深入理解计算机系统》2.《算法导论》3.《计算机程序的构造和解释》4.《数据库系
- 算法基础系列第三章——图论之最短路径问题
杨枝
算法基础图论算法dijkstrabellman–fordalgorithm
详解蓝桥图论之最短路径问题关于图论知识铺垫图的定义邻接矩阵邻接表最短路算法总大纲dijkstra算法朴素版dijsktra算法(适用于稠密图)例题描述参考代码(C++版本)算法模板细节落实堆优化版dijkstra算法(适用于稀疏图)例题描述参考实现代码(C++版本)算法模板细节落实bellman-ford算法例题描述——有边数限制的最短路参考代码(C++版本)算法模板细节落实SPFA算法例题描述参
- 【备战蓝桥杯】 算法·每日一题(详解+多解)-- day11
苏州程序大白
365天大战算法算法蓝桥杯图论数据结构C++
【备战蓝桥杯】算法·每日一题(详解+多解)--day11✨博主介绍前言Dijkstra算法流程网络延迟时间解题思路Bellman-Ford算法流程K站内最便宜的航班解题思路SPFA算法K站内最便宜的航班解题思路具有最大概率的路径解题思路Floyd算法找到阈值距离内邻居数量最少的城市解题思路Johnson全源最短路径算法正确性证明解题思路点击直接资料领取✨博主介绍作者主页:苏州程序大白作者简介:CS
- 备战蓝桥杯—有边数限制的最短路 (bellman_ford+)——[AcWing]有边数限制的最短路
Joanh_Lan
备战蓝桥杯蓝桥杯图论算法acm竞赛
因为近期在学图,所以顺带的写一篇最短路的备战蓝桥杯文章。最短路(单源)所有边权都为正数有两种算法:1.朴素DijkstraO(n^2)2.堆优化的DijkstraO(mlogn)存在负权边有两种算法:1.Bellman-FordO(nm)2.SPFA一般O(m),最坏O(nm)今天,我来介绍一下Bellman-Ford(存在负权+有边数限制)存在负权且有边数限制——》Bellman-Ford(在我
- 备战蓝桥杯---图论之最短路Bellman-Ford算法及优化
CoCoa-Ck
图论算法
目录上次我们讲到复杂度为(n+m)logm(m为边,n为点)的迪杰斯特拉算法,其中有一个明显的不足就是它无法解决包含负权边的图。于是我们引进Bellman-Ford算法。核心:枚举所有的点,能松弛就松弛,直到所有点都不能松弛。具体过程:我们在外循环循环n-1(n为点数),然后在内循环上枚举所有的边,能松弛就松弛。到这里,肯定有许多人对它正确性怀疑,其实,我们可以知道,在外循环循环k轮后,k步以内可
- 【转载】ACM入门 .
dongfan1861
人工智能phpc/c++
初期:一.基本算法:(1)枚举.(poj1753,poj2965)(2)贪心(poj1328,poj2109,poj2586)(3)递归和分治法.(4)递推.(5)构造法.(poj3295)(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:(1)图的深度优先遍历和广度优先遍历.(2)最短路径算法(dijkstra,bellman-ford,
- 蓝桥杯:C++贪心算法、字符串函数、朴素模式匹配算法、KMP算法
DaveVV
蓝桥杯c++蓝桥杯c++贪心算法算法开发语言数据结构c语言
贪心算法贪心(Greedy)算法的原理很容易理解:把整个问题分解成多个步骤,在每个步骤都选取当前步骤的最优方案,直到所有步骤结束;每个步骤都不考虑对后续步骤的影响,在后续步骤中也不再回头改变前面的选择。贪心算法虽然简单,但它有广泛的应用。例如图论中的最小生成树(MinimalSpanningTree,MST)算法、单源最短路径算法(Dijkstra)都是贪心算法的典型应用。贪心算法的主要问题是不一
- 【数据结构】图
rygttm
数据结构数据结构算法
文章目录图1.图的两种存储结构2.图的两种遍历方式3.最小生成树的两种算法(无向连通图一定有最小生成树)4.单源最短路径的两种算法5.多源最短路径图1.图的两种存储结构1.图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存
- 世界顶级名校计算机专业,都在用哪些书当教材?(文末送书)
小尘要自信
java开发语言数据库算法赠书计算机组成
目录01《深入理解计算机系统》02《算法导论》03《计算机程序的构造和解释》04《数据库系统概念》05《计算机组成与设计:硬件/软件接口》06《离散数学及其应用》07《组合数学》08《斯坦福算法博弈论二十讲》参与规则清华、北大、MIT、CMU、斯坦福的学霸们在新学期里要学什么?今天我们来盘点一下那些世界名校计算机专业采用的教材。01《深入理解计算机系统》原书第3版)作者:兰德尔E.布莱恩特大卫R.
- 2024/2/17 图论 最短路入门 dijkstra 1
极度的坦诚就是无坚不摧
寒假集训寒假算法图论算法c++c语言dijkstra
目录算法思路Dijkstra求最短路AcWing849.Dijkstra求最短路I-AcWing850.Dijkstra求最短路II-AcWing题库最短路最短路-HDU2544-VirtualJudge(vjudge.net)【模板】单源最短路径(弱化版)P3371【模板】单源最短路径(弱化版)-洛谷|计算机科学教育新生态(luogu.com.cn)【模板】单源最短路径(标准版)P4779【模板
- 最短路问题模版总结
Jared_devin
最短路问题Acwing算法c++图论数据结构宽度优先动态规划深度优先
目录思维导图Dijkstra(朴素)思路:代码如下:Dijkstra(堆优化)代码如下:Bellman-Ford思路:对于串联效应的解释:(也就是为什么需要备份数组)代码如下:SPFA思路:为什么和BF算法的判断不一样:代码如下:SPFA判负环思路:代码如下:Floyd编辑思路:代码如下:复习小结~~符号:n为点数,m为边数思维导图(来自y总)注:1.朴素Dijkstra适用于稠密图,堆优化Dij
- 算法导论23章最小生成树习题—23.2练习
之墨_
算法算法最小生成树
23.2-1对于同一个输人图,Kruskal算法返回的最小生成树可以不同。这种不同来源于对边进行排序时,对权重相同的边进行的不同处理。证明:对于图G的每棵最小生成树T,都存在一种办法来对G的边进行排序,使得Kruskal算法所返回的最小生成树就是T。假设我们想选择T作为最小生成树。然后,为了使用Kruskal算法获得此树,我们将首先按边的权重对边进行排序,然后通过选取包含在最小生成树中的一条边来解
- 《算法导论》第三章 3.1(参考答案)
Mental_Zzk
3.1渐进符号3.1-1假设与都是渐进非负函数。使用记号的基本定义来证明。因为与都为渐进非负的函数,所以根据定义,有:存在、,使得:当时,;当时,。所以,我们取;此时,当时,同时有。下面我们取,根据的渐进非负保证,当时,有:所以,得证!。3.1-2证明:对任意实常数和,其中,有。为了证明,我们需要找到常量,使得:对于所有的,有。其中:故,若。易得,若,有下列公式:,即:。故,取,即可证明。3.1-
- C#,图论与图算法,有向图单源最短路径的贝尔曼·福特(Bellman Ford)算法与源代码
深度混淆
C#算法演义AlgorithmRecipes算法图论最短路径算法BellmanFord
RichardBellmanLesterFord一、贝尔曼·福特(BellmanFord)算法概要贝尔曼·福特(BellmanFord)算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-SourceShortestPath)的算法。该算法由RichardBellman和LesterFord分别发表于1958年和1956年,而实际上EdwardF.Moore也在1957年发布了相同
- python算法之 Dijkstra 算法
JNU freshman
python蓝桥杯python算法开发语言
文章目录基本思想:步骤:复杂度:注意事项:代码实现K站中转内最便宜的航班Dijkstra算法是一种用于解决单源最短路径问题的经典算法。该问题的目标是找到从图中的一个固定顶点(称为源点)到图中所有其他顶点的最短路径。以下是Dijkstra算法的基本思想和步骤:基本思想:Dijkstra算法通过贪心策略逐步扩展已找到的最短路径集合,直到到达目标顶点或者所有顶点都被访问过。步骤:初始化:初始化距离和父节
- 算法导论 总结索引 | 第一部分 第三章:函数的增长
Asher Gu
算法导论算法
研究算法的渐近效率1、渐近记号(40)1、Θ:使得对于足够大的n,函数f(n)能夹入c1g(n)与c2g(n)之间,则f(n)∈集合Θ(g(n))g(n)是f(n)的一个渐近紧确界g(n)本身必为渐近非负使用Θ(1)来意指一个常量或者关于某个常量的一个常量函数2、O:Θ记号渐近地给出一个函数的上界和下界。当只有一个渐近上界时,使用O记号f(n)=Θ(g(n))蕴含着f(n)=O(g(n)),因为Θ
- 算法导论 总结索引 | 第一部分 第二章:算法基础
Asher Gu
算法导论算法
1、插入排序(24)1、希望排序的数也称为关键词2、插入排序对于少量排序元素,是一个有效的算法3、原址排序输入的数:算法在数组A中重排这些数,在任何时候,最多只有其中的常数个数字存储在数组外面注意下标是从1开始的,从第2个数字开始向后的每个数向前插入到当前正确位置,确保插入数字及之前的数字从小到大排列1.1循环不变式与插入排序的正确性1、对于for循环(循环变量为j)中的每次迭代开始,剩余子数组A
- 算法导论 总结索引 | 第一部分 第一章:算法在计算中的作用
Asher Gu
算法导论算法c++
1、第一部分:基础知识综述1.1第一章对算法在现代计算系统中地位的综述,算法是一项技术1.2第二章解决对n个数的排列问题插入排序:增量式做法归并排序:递归技术,分治法两种算法所需运行时间随n的值而增长,但增长速度不同。分析了两种算法的运行时间,并给出一种有用的表示方法来表达这些运行时间1.3第三章给出了上述表示法的准确定义,称为渐进表示,定义了几种渐进符号,表示算法运行时间的上界和下界1.4第四章
- 图(高阶数据结构)
GG_Bond20
数据结构数据结构算法c++
目录一、图的基本概念二、图的存储结构2.1邻接矩阵2.2邻接表三、图的遍历3.1广度优先遍历3.2深度优先遍历四、最小生成树4.1Kruskal算法4.2Prim算法五、最短路径5.1单源最短路径-Dijkstra算法5.2单源最短路径-Bellman-Ford算法5.3多源最短路径-Floyd-Warshall算法一、图的基本概念图是由顶点集合和边的集合组成的一种数据结构,记作有向图与无向图在有
- 最短路径算法
静心问道
数据结构算法
1.Dijkstra算法在正数权重的有向图中求解某个源点到其余各个顶点的最短路径一般可以采用迪杰斯特拉算法(Dijkstra算法)。1.1适用场景单源最短路径权重都为正1.2伪代码1.3示例问题描述:计算节点0到节点4的最短路径,图路径如下:step1:采用二维表记录0点到其他节点的距离,第一列距离初始化为∞\infty∞,第二列记录到达每个节点时,该节点前面的点,主要用于最短路径回溯。step2
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu