Hdu 5015 233 Matrix (矩阵乘法)

题目链接

233 Matrix

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 503    Accepted Submission(s): 316


Problem Description
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333...) Besides, in 233 matrix, we got a i,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,...,a n,0, could you tell me a n,m in the 233 matrix?
 

Input
There are multiple test cases. Please process till EOF.

For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).
 

Output
For each case, output a n,m mod 10000007.
 

Sample Input
   
   
   
   
1 1 1 2 2 0 0 3 7 23 47 16
 

Sample Output
   
   
   
   
234 2799 72937

题意:一个矩阵,a(0,1)=233,a(0,2)=2333,a(0,3)=23333,a(0,4)=233333.......,告诉你n,m,并且给你a(1,0),a(2,0)......a(n,0)。
a(i,j)=a(i-1,j)+a(i,j-1),1<=i,j。求a(n,m)。n<=10,m<=1000000000。

题解:由于n很小,m很大,所以容易想到构造矩阵,并用矩阵二分幂来解。我们用l1,l2....ln,表示当前列的值,初始值为a(1,0),....a(n,0)。设当前列的下一列为b1,b2,....bn。那么容易得出b1=l1+2333..,b2=l1+l2+2333..,b3=l1+l2+2333...,bn=l1+l2+..ln+2333..。而下一列的23333=当前列2333*10+3。那么我们可以这样构造矩阵,假设n==4。

l1            1 0 0 0 1 0 b1

l2            1 1 0 0 1 0 b2

l3        *  1 1 1 0 1 0     = b3

l4            1 1 1 1 1 0 b4

233..       0 0 0 0 10 3 233..*10+3

1              0 0 0 0 0 1 1

这样我们就可以用当前列推出下一列,我们就可以用矩阵二分幂求解了。

#include<stdio.h>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<iostream>
#include<string.h>
#include<string>
#include<math.h>
#include<stdlib.h>
#define inff 0x3fffffff
#define eps 1e-8
#define nn 210000
#define mod 10000007
typedef __int64 LL;
using namespace std;
int N,M;
LL aa[20];
const int MAXN=20;
const int MAXM=20;
struct Matrix
{
    int n,m;
    LL a[MAXN][MAXM];
    void clear()
    {
        n=m=0;
        memset(a,0,sizeof a);
    }
    Matrix operator *(const Matrix &b) const
    {
        Matrix tmp;
        tmp.clear();
        tmp.n=n; tmp.m=b.m;
        for(int k=0; k<m; k++)
            for(int i=0; i<n; i++)
                for(int j=0; j<b.m; j++)
                {
                    tmp.a[i][j]+=(a[i][k]*b.a[k][j])%mod;
                    tmp.a[i][j]%=mod;
                }
        return tmp;
    }

}ma,ans;
Matrix operator ^(Matrix x,int p)
{
    Matrix ret;
    ret.clear();
    ret.n=x.n; ret.m=x.m;
    for(int i=0; i<x.n; i++)
        for(int j=0; j<x.m; j++)
            ret.a[i][j] = (i == j ? 1 : 0);
    while(p)
    {
        if(p%2) ret = ret * x;
        x = x * x;
        p /= 2;
    }
    return ret;
}
int main()
{
    int i,j;
    while(scanf("%d%d",&N,&M)!=EOF)
    {
        for(i=0;i<N;i++)
        {
            scanf("%I64d",&aa[i]);
            aa[i]%=mod;
        }
        ma.clear();
        ma.n=ma.m=N+2;
        for(i=0;i<N;i++)
        {
            for(j=0;j<=i;j++)
                ma.a[i][j]=1;
            ma.a[i][N]=1;
        }
        ma.a[N][N]=10;
        ma.a[N][N+1]=3;
        ma.a[N+1][N+1]=1;
        ans.clear();
        ans.n=N+2,ans.m=1;
        for(i=0;i<N;i++)
            ans.a[i][0]=aa[i];
        ans.a[N][0]=233;
        ans.a[N+1][0]=1;
        ans=(ma^M)*ans;
        printf("%I64d\n",ans.a[N-1][0]);
    }
    return 0;
}

看了大神的代码,只跑了31ms,好像直接推出了公式,orz。。。。先贴在这里,有空再学学。


#include<stdio.h>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<iostream>
#include<string.h>
#include<string>
#include<math.h>
#include<stdlib.h>
#define inff 0x3fffffff
#define eps 1e-8
#define nn 210000
#define mod 10000007
typedef __int64 LL;
using namespace std;
int N,M;
LL aa[20];
const int MAXN=20;
const int MAXM=20;
struct Matrix
{
    int n,m;
    LL a[MAXN][MAXM];
    void clear()
    {
        n=m=0;
        memset(a,0,sizeof a);
    }
    Matrix operator *(const Matrix &b) const
    {
        Matrix tmp;
        tmp.clear();
        tmp.n=n; tmp.m=b.m;
        for(int k=0; k<m; k++)
            for(int i=0; i<n; i++)
                for(int j=0; j<b.m; j++)
                {
                    tmp.a[i][j]+=(a[i][k]*b.a[k][j])%mod;
                    tmp.a[i][j]%=mod;
                }
        return tmp;
    }

}ma,ans;
Matrix operator ^(Matrix x,int p)
{
    Matrix ret;
    ret.clear();
    ret.n=x.n; ret.m=x.m;
    for(int i=0; i<x.n; i++)
        for(int j=0; j<x.m; j++)
            ret.a[i][j] = (i == j ? 1 : 0);
    while(p)
    {
        if(p%2) ret = ret * x;
        x = x * x;
        p /= 2;
    }
    return ret;
}
int main()
{
    int i,j;
    while(scanf("%d%d",&N,&M)!=EOF)
    {
        for(i=0;i<N;i++)
        {
            scanf("%I64d",&aa[i]);
            aa[i]%=mod;
        }
        ma.clear();
        ma.n=ma.m=N+2;
        for(i=0;i<N;i++)
        {
            for(j=0;j<=i;j++)
                ma.a[i][j]=1;
            ma.a[i][N]=1;
        }
        ma.a[N][N]=10;
        ma.a[N][N+1]=3;
        ma.a[N+1][N+1]=1;
        ans.clear();
        ans.n=N+2,ans.m=1;
        for(i=0;i<N;i++)
            ans.a[i][0]=aa[i];
        ans.a[N][0]=233;
        ans.a[N+1][0]=1;
        ans=(ma^M)*ans;
        printf("%I64d\n",ans.a[N-1][0]);
    }
    return 0;
}



你可能感兴趣的:(数学,ACM,矩阵乘法)