【BZOJ 3157】【BZOJ 3516】国王奇遇记

description

Solution1

用倍增搞,
Sk,q=ki=1iqmi
Sk 转移到 Sk+1 显然,
Sk 转移到 S2k

S2k,q=Sk,q+mki=1k(i+k)qmi

S2k,q=Sk,q+mki=1kmij=0qCjqijkqj

调换主体:
S2k,q=Sk,q+mkj=0qCjqkqji=1kijmi

S2k,q=Sk,q+mkj=0qCjqkqjSk,j

复杂度: O(log(n)m2)

Solution2

Sk=ni=1ikmi

(m1)Sk=mSkSk

(m1)Sk=i=1nikmi+1i=1nikmi

(m1)Sk=i=2n+1(i1)kmi+1i=1nikmi

(i1)k 拆开,发现一堆可以抵消,整理一下:
(m1)Sk=nkmn+1m+j=1kCjk(1)ji=2nmiikj

或者:(但要注意k=0的情况)
(m1)Sk=nkmn+1+j=1kCjk(1)ji=1nmiikj

(m1)Sk=nkmn+1+j=1kCjk(1)jSkj

愉快的用 O(m2) 搞,

Code

Solution2:

#include<cstdio>
#include<cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long LL;
const int N=1500,mo=1000000007;
LL n,m;
LL C[N][N];
LL S[N];
LL ksm(LL q,LL w)
{
    LL ans=1;q%=mo;
    while(w)
    {
        if(w%2)ans=(ans*q)%mo;
        (q*=q)%=mo;w=w/2;
    }
    return ans;
}
LL ss(LL q)
{
    LL ans=ksm(n,q)*ksm(m,n+1)%mo;
    fo(i,1,q)(ans+=C[q][i]*((i%2)?-1:1)*S[q-i])%=mo;
    return (ans%mo+mo)%mo;
}
int main()
{
    scanf("%lld%lld",&n,&m);
    if(m==1){printf("%lld\n",(1+n%mo)*n%mo/2%mo);return 0;}
    fo(i,0,m+1)
    {
        C[i][0]=1;
        fo(j,1,i)C[i][j]=(C[i-1][j]+C[i-1][j-1])%mo;
    }
    LL mn=ksm(m-1,mo-2);
    S[0]=((ksm(m,n+1)-m)%mo+mo)%mo*mn%mo;
    fo(i,1,m)S[i]=(ss(i)*mn)%mo;
    printf("%lld\n",S[m]);
    return 0;
}

你可能感兴趣的:(数论)