E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
机器学习笔记——吴恩达
吴恩达
深度学习笔记(30)-正则化的解释
正则化(Regularization)深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常
极客Array
·
2024-09-16 00:23
七.正则化
吴恩达
机器学习之正则化(Regularization)http://www.cnblogs.com/jianxinzhou/p/4083921.html从数学公式上理解L1和L2https://blog.csdn.net
愿风去了
·
2024-09-15 21:11
人工智能中的哲学
〇、前言人工智能威胁论支持者:埃隆·马斯克、史蒂芬·霍金、比尔·盖茨反对者:马克·扎克伯格、
吴恩达
、佩德罗·多明戈斯人工智能是什么?应不应该发展人工智能?未来机器人和自动化会不会完全取代人类劳动力?
Dijkstra's Monk-ey
·
2024-09-08 11:56
深度学习
人工智能
哲学
笔记
AIGC
业界资讯
需求分析
程序人生
李宏毅
机器学习笔记
——反向传播算法
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
小陈phd
·
2024-09-04 10:07
机器学习
机器学习
算法
神经网络
吴恩达
深度学习笔记(24)-为什么要使用深度神经网络?
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
极客Array
·
2024-09-01 16:18
python里的i_Python 中[::] 与 [:,:,i] 总结
最近在学
吴恩达
的DeepLearning中的第五门课SequenceModel,第一个lab是用Numpy搭建RNN,在搭建RNN的时候用到了Numpy的Slicing([:,:,i]),在这里想总结下
桌游顽主的航仔
·
2024-08-31 13:55
python里的i
全网爆火的第一本程序员的Agent入门书籍——《大模型应用开发 动手做AI Agent》
OpenAI创始人奥特曼预测,未来各行各业,每一个人都可以拥有一个AIAgent;比尔·盖茨在2023年层预言:AIAgent将彻底改变人机交互方式,并颠覆整个软件行业;
吴恩达
教授在AIAscent2024
AI大模型-搬运工
·
2024-08-28 11:06
人工智能
大模型
程序员
AI
Agent
AI大模型
LLM
promp
一点机器学习的体会
传统的机器学习有一套较完整的理论和算法,去scikitlearning网站可以有个大致的了解,或者听下
吴恩达
老师那门基础ML课程(网
zfq212
·
2024-08-27 20:18
【深度学习】
吴恩达
-课后作业-搭建多层神经网络以及应用
Ng的深度学习,其实前几个月就听完了,课后作业也是大懂不懂的都做了一遍,代码也跟着各种各样的参考敲了一遍,但暑假几个月没怎么学习。。。基本也忘得差不多了,这几周回顾了一下深度学习这门课的笔记,看了别的博主的总结,对CNN,RNN,LSTM,注意力机制等网络结构进行了复盘,虽然感觉自己很心浮气躁,一边也在学集成学习那几个算法和推荐系统相关,这里也告诉自己:贪多嚼不烂,心急吃不了热豆腐,慢慢来,还是要
—Xi—
·
2024-08-23 10:17
深度学习
深度学习
机器学习
人工智能
python
神经网络
Python
机器学习笔记
:CART算法实战
完整代码及其数据,请移步小编的GitHub传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言在python
机器学习笔记
战争热诚
·
2024-03-23 17:00
机器学习笔记
什么是机器学习:机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。机器学习有下面几种定义:(1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。(2)机器学习是对能通过经验自动改进的计算机算法的研究。(3)
rl染离
·
2024-03-09 15:44
机器学习
笔记
人工智能
深度学习应该如何入门?
2.学习机器学习
吴恩达
的机器学习课程是一个很好的入门教程。虽然有些地
wypdao
·
2024-03-09 11:38
人工智能
深度学习
人工智能
机器学习笔记
(KNN算法)
情景分析现在一个二维平面上有众多点(x1,y1),(x2,y2)...(xn,yn)(x_1,y_1),(x_2,y_2)...(x_n,y_n)(x1,y1),(x2,y2)...(xn,yn),我也知道它们所属哪个类别,现在给出一个点(x,y)(x,y)(x,y),问这个点是属于哪个类的。这是一个典型的分类问题重要概念相邻点的个数K相邻点的个数Kknn中最重要的概念就是这个了,也是唯一需要理解
空木幻城
·
2024-02-20 21:08
机器学习
python
机器学习
算法
【
机器学习笔记
】 9 集成学习
集成学习方法概述Bagging从训练集中进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果:假设一个班级每个人的成绩都不太好,每个人单独做的考卷分数都不高,但每个人都把自己会做的部分做了,把所有考卷综合起来得到成绩就会比一个人做的高Boosting训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化
RIKI_1
·
2024-02-20 21:07
机器学习
机器学习
笔记
集成学习
吴恩达
机器学习全课程笔记第一篇
P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【
吴恩达
机器学习
亿维数组
·
2024-02-20 21:37
Machine
Learning
机器学习
笔记
人工智能
吴恩达
机器学习全课程笔记第二篇
目录前言P31-P33logistics(逻辑)回归决策边界P34-P36逻辑回归的代价函数梯度下降的实现P37-P41过拟合问题正则化代价函数正则化线性回归正则化logistics回归前言这是
吴恩达
机器学习笔记
的第二篇
亿维数组
·
2024-02-20 21:03
Machine
Learning
机器学习
笔记
人工智能
学习
【
机器学习笔记
】7 KNN算法
距离度量欧氏距离(Euclideandistance)欧几里得度量(EuclideanMetric)(也称欧氏距离)是一个通常采用的距离定义,指在维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。曼哈顿距离(Manhattandistance)想象你在城市道路里,要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线
RIKI_1
·
2024-02-20 21:03
机器学习
机器学习
笔记
算法
卷积神经网络
吴恩达
coursera
ConvolutionalNNFoundationsofCNNmatrixsconvolutionEdgedetectionVertical/horizontialconv-forward(tf.nn.cov2d)matrix(6×6)∗filter(3×3)=matrix(4×4)matrix(6\times6)*filter(3\times3)=matrix(4\times4)matrix(6
stoAir
·
2024-02-20 20:01
吴恩达深度学习笔记
cnn
人工智能
神经网络
【
机器学习笔记
】14 关联规则
关联规则概述关联规则(AssociationRules)反映一个事物与其他事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么,其中一个事物就能够通过其他事物预测到。关联规则可以看作是一种IF-THEN关系。假设商品A被客户购买,那么在相同的交易ID下,商品B也被客户挑选的机会就被发现了。有没有发生过这样的事:你出去买东西,结果却买了比你计划的多得多的东西?这是一种被称为
RIKI_1
·
2024-02-20 11:43
机器学习
机器学习
笔记
人工智能
【
机器学习笔记
】13 降维
降维概述维数灾难维数灾难(CurseofDimensionality):通常是指在涉及到向量的计算的问题中,随着维数的增加,计算量呈指数倍增长的一种现象。在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增加搜寻良好解决方案的困难。这个问题就是我们常说的维数灾难。维数灾难涉及数字分析、抽样、组合、机器学习、数据挖掘和数据库
RIKI_1
·
2024-02-20 11:13
机器学习
机器学习
笔记
人工智能
【
吴恩达
·机器学习】第二章:多变量线性回归模型(选择学习率、特征缩放、特征工程、多项式回归)
——《朗读者》0、声明本系列博客文章是博主本人根据
吴恩达
老师2022年的机器学习课程所学而写,主要包括老师的核心讲义和自己的理解。
Yaoyao2024
·
2024-02-20 11:12
机器学习
线性回归
人工智能
【
机器学习笔记
】8 决策树
决策树原理决策树是从训练数据中学习得出一个树状结构的模型。决策树属于判别模型。决策树是一种树状结构,通过做出一系列决策(选择)来对数据进行划分,这类似于针对一系列问题进行选择。决策树的决策过程就是从根节点开始,测试待分类项中对应的特征属性,并按照其值选择输出分支,直到叶子节点,将叶子节点的存放的类别作为决策结果。以下小美相亲的例子就是决策树决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出
RIKI_1
·
2024-02-20 11:39
机器学习
机器学习
笔记
决策树
【
机器学习笔记
】 15 机器学习项目流程
机器学习的一般步骤数据清洗数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。探索性数据分析(EDA探索性数据分析(EDA)是一个开放式流程,我们制作绘图并计算统计数据,以便探索我们的数据。目的是找到异常,模式,趋势或关系。这些可能是有趣的(例如,找到两个变量之间的相关性),或者它们可用
RIKI_1
·
2024-02-20 08:43
机器学习
机器学习
笔记
人工智能
吴恩达
深度学习-L1 神经网络和深度学习总结
作业地址:
吴恩达
《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:
吴恩达
《深度学习》笔记汇总-知乎(zhihu.com)我的「
吴恩达
深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com
向来痴_
·
2024-02-20 07:26
深度学习
人工智能
【
机器学习笔记
】5 机器学习实践
数据集划分子集划分训练集(TrainingSet):帮助我们训练模型,简单的说就是通过训练集的数据让我们确定拟合曲线的参数。验证集(ValidationSet):也叫做开发集(DevSet),用来做模型选择(modelselection),即做模型的最终优化及确定的,用来辅助我们的模型的构建,即训练超参数,可选;测试集(TestSet):为了测试已经训练好的模型的精确度。三者划分:训练集、验证集、
RIKI_1
·
2024-02-19 23:52
机器学习
机器学习
笔记
人工智能
LLM(2)之指令提示词(Prompt)基础教学
之指令提示词Author:OnceDayDate:2024年2月15日全系列专栏请查看:LLM实践成长_Once_day的博客-CSDN博客参考文章:中文完整版全9集ChatGPT提示工程师|AI大神
吴恩达
教你写提示词
Once_day
·
2024-02-19 20:04
CS小白之路
#
LLM实践成长
prompt
自然语言处理
人工智能
【
机器学习笔记
】11 支持向量机
支持向量机(SupportVectorMachine,SVM)支持向量机是一类按监督学习(supervisedlearning)方式对数据进行二元分类的广义线性分类器(generalizedlinearclassifier),其决策边界是对学习样本求解的最大边距超平面(maximum-marginhyperplane)。与逻辑回归和神经网络相比,支持向量机,在学习复杂的非线性方程时提供了一种更为清
RIKI_1
·
2024-02-19 19:38
机器学习
机器学习
笔记
支持向量机
【
机器学习笔记
】12 聚类
无监督学习概述监督学习在一个典型的监督学习中,训练集有标签,我们的目标是找到能够区分正样本和负样本的决策边界,需要据此拟合一个假设函数。无监督学习与此不同的是,在无监督学习中,我们的数据没有附带任何标签,无监督学习主要分为聚类、降维、关联规则、推荐系统等方面。主要的无监督学习方法聚类(Clustering)如何将教室里的学生按爱好、身高划分为5类?降维(DimensionalityReductio
RIKI_1
·
2024-02-19 19:38
机器学习
机器学习
笔记
聚类
【
机器学习笔记
】4 朴素贝叶斯
贝叶斯方法贝叶斯分类贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯分类是这一类算法中最简单的较为常见的算法。先验概率根据以往经验和分析得到的概率。我们用()来代表在没有训练数据前假设拥有的初始概率。后验概率根据已经发生的事件来分析得到的概率。以(|)代表假设成立的情下观察到数据的概率,因为它反映了在看到训练数据后成立的置信度。联合概率是指在多元的概率分
RIKI_1
·
2024-02-19 19:07
机器学习
机器学习
笔记
人工智能
【
机器学习笔记
】 6 机器学习库Scikit-learn
Scikit-learn概述Scikit-learn是基于NumPy、SciPy和Matplotlib的开源Python机器学习包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数据分析师首选的机器学习工具包。自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学习算法。
RIKI_1
·
2024-02-19 19:07
机器学习
机器学习
笔记
scikit-learn
【
机器学习笔记
】10 人工神经网络
人工神经网络发展史1943年,心理学家McCulloch和逻辑学家Pitts建立神经网络的数学模型,MP模型每个神经元都可以抽象为一个圆圈,每个圆圈都附带特定的函数称之为激活函数,每两个神经元之间的连接的大小的加权值即为权重。1960年代,人工网络得到了进一步地发展感知机和自适应线性元件等被提出。M.Minsky仔细分析了以感知机为代表的神经网络的局限性,指出了感知机不能解决非线性问题,这极大影响
RIKI_1
·
2024-02-19 19:07
机器学习
机器学习
笔记
人工智能
【
机器学习笔记
】3 逻辑回归
分类问题分类问题监督学习最主要的类型,主要特征是标签离散,逻辑回归是解决分类问题的常见算法,输入变量可以是离散的也可以是连续的二分类先从用蓝色圆形数据定义为类型1,其余数据为类型2;只需要分类1次,步骤:①->②多分类问题先定义其中一类为类型1(正类),其余数据为负类(rest);接下来去掉类型1数据,剩余部分再次进行二分类,分成类型2和负类;如果有类,那就需要分类-1次,步骤:①->②->③->
RIKI_1
·
2024-02-19 19:02
机器学习
机器学习
笔记
逻辑回归
【
吴恩达
·机器学习】第二章:单变量线性回归模型(代价函数、梯度下降、学习率、batch)
——《朗读者》0、声明本系列博客文章是博主本人根据
吴恩达
老师2022年的机器学习课程所学而写,主要包括老师的核心讲义和自己的理解。
Yaoyao2024
·
2024-02-19 14:41
机器学习
线性回归
学习
深度学习-
吴恩达
L1W2作业
作业1:
吴恩达
《深度学习》L1W2作业1-Heywhale.com作业2:
吴恩达
《深度学习》L1W2作业2-Heywhale.com作业1你需要记住的内容:-np.exp(x)适用于任何np.arrayx
向来痴_
·
2024-02-15 09:05
深度学习
人工智能
【百面
机器学习笔记
】模型评估
模型评估指标准确率(Accuracy)准确率是指分类正确的样本占总样本个数的比例。Accuracy=n(correct)/n(total)当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率。所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素。精确率(Precision)&召回率(Recall)精确率是指分类正确的正样本个数占分类器判定为正样本
葡萄肉多
·
2024-02-15 08:06
吴恩达
机器学习—大规模机器学习
学习大数据集数据量多,模型效果肯定会比较好,但是大数据也有它自己的问题,计算复杂如果存在100000000个特征,计算量是相当大的,在进行梯度下降的时候,还要反复求损失函数的偏导数,这样一来计算量更大。那么有没有简单的方法来应对大量的数据呢?我们可以采取随机抽样,比如,抽取1000个样本进行模型的构建。那么如何决定抽取多少样本呢?可以通过学习曲线获得,随着数据量的增加,无论是偏差和误差,都会趋向于
魏清宇
·
2024-02-14 21:14
李宏毅
机器学习笔记
2.回归
最近在跟着Datawhale组队学习打卡,学习李宏毅的机器学习/深度学习的课程。课程视频:https://www.bilibili.com/video/BV1Ht411g7Ef开源内容:https://github.com/datawhalechina/leeml-notes本篇文章对应视频中的P3。另外,最近我也在学习邱锡鹏教授的《神经网络与深度学习》,会补充书上的一点内容。通过上一次课1.机器
Simone Zeng
·
2024-02-12 11:34
机器学习
机器学习
【
机器学习笔记
】基于实例的学习
基于实例的学习文章目录基于实例的学习1基本概念与最近邻方法2K-近邻(KNN)3距离加权KNN4基于实例/记忆的学习器5局部加权回归5多种回归方式对比6懒惰学习与贪婪学习动机:人们通过记忆和行动来推理学习。1基本概念与最近邻方法名词概念参数化设定一个特定的函数形式优点:简单,容易估计和解释可能存在很大的偏置:实际的数据分布可能不遵循假设的分布非参数化:分布或密度的估计是数据驱动的(data-dri
住在天上的云
·
2024-02-12 09:57
机器学习
机器学习
笔记
学习
KNN
实例学习
fast.ai
机器学习笔记
(一)
机器学习1:第1课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-1-84a1dc2b5236译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。简要课程大纲根据时间和班级兴趣,我们将涵盖类似以下内容
绝不原创的飞龙
·
2024-02-12 03:25
人工智能
人工智能
python
fast.ai
机器学习笔记
(四)
机器学习1:第11课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-11-7564c3c18bbb译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。使用SGD优化多层函数的回顾[0:00]这个想法是
绝不原创的飞龙
·
2024-02-11 14:57
人工智能
人工智能
python
机器学习笔记
(3):误差、复杂度曲线、学习曲线等
本文来自之前在Udacity上自学机器学习的系列笔记。这是第3篇,介绍了模型的误差类型、误差的由来、找到模型适合的参数、以及避免欠拟合和过拟合的方法。1.诊断误差1.1.误差类型我们的预测或者分类的结果与实际结果相比较,会存在一定的误差,误差越小,表示结果越好。一般有两种误差来源,欠拟合和过拟合。将问题看得过于简单导致了欠拟合(Underfitting),将问题看得过于复杂导致了过拟合(Overf
链原力
·
2024-02-11 14:23
fast.ai
机器学习笔记
(三)
机器学习1:第8课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-8-fa1a87064a53译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。广义定义的神经网络视频/笔记本正如我们在上一课结束时讨
绝不原创的飞龙
·
2024-02-11 10:19
人工智能
人工智能
python
吴恩达
机器学习—正则化
过拟合问题欠拟合与过拟合当变量过少时,可能存在欠拟合;当变量过多时,会存在过拟合。过拟合可能对现有数据拟合效果较好,损失函数值几乎为零,但是不能进行泛化时,即不适于非训练集的其他数据。如何解决过拟合问题特征变量过多造成过拟合绘制假设模型图像,但当特征变量变多时,绘制很困难。当变量过多而训练数据较少时,容易出现过拟合。过拟合的解决办法解决过拟合问题,通常有两种方法:一种是减少特征的数量,可以通过人工
魏清宇
·
2024-02-11 09:55
fast.ai
机器学习笔记
(二)
机器学习1:第5课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-5-df45f0c99618译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。视频复习测试集,训练集,验证集和OOB我们有一个数据集
绝不原创的飞龙
·
2024-02-11 08:57
人工智能
人工智能
python
政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(一){两篇文章讲清楚}
第一次接触机器学习的小伙伴,环境搭建参考我的这篇文章(只参考这个里面关于环境搭建的部分就可以):政安晨的
机器学习笔记
——跟着演练快速理解Te
政安晨
·
2024-02-11 03:34
政安晨的机器学习笔记
神经网络
人工智能
深度学习
Python
数学基础
机器学习
Conda
吴恩达
机器学习—推荐系统
问题规划引例—电影推荐假设已有的数据如上所示,洋红色线内的数据表示缺失数据,那么我们如何根据已有的评分数据来预测这些缺失的数据呢?基于特征的推荐算法基于内容的推荐系统已知数据如上,有四个人对于不同电影的评分,我们还有分别表示电影包含浪漫成分和动作片成分的多少。那么每一个电影都可以用一个向量来表示,如第一个电影可以表示为,其中第一个元素为常数。那么对于每一个用户j,我们可以用一个学习算法学习参数,然
魏清宇
·
2024-02-11 02:53
【
机器学习笔记
】贝叶斯学习
贝叶斯学习文章目录贝叶斯学习1贝叶斯学习背景2贝叶斯定理3最大后验假设MAP(MaxAPosterior)4极大似然假设ML(MaximumLikelihood)5朴素贝叶斯NB6最小描述长度MDL1贝叶斯学习背景试图发现两件事情的关系(因果关系,先决条件&结论)。执果索因:肺炎→肺癌?不好确定,换成确诊肺癌得肺炎的概率2贝叶斯定理贝叶斯定理是一种用先验慨率来推断后验慨率的公式,它可以表示为:P(
住在天上的云
·
2024-02-10 17:49
机器学习
机器学习
笔记
学习
贝叶斯学习
人工智能
【
机器学习笔记
】决策树
决策树文章目录决策树1决策树学习基础2经典决策树算法3过拟合问题1决策树学习基础适用决策树学习的经典目标问题带有非数值特征的分类问题离散特征没有相似度概念特征无序例子:SkyTempHumidWindWaterForecastEnjoySunnyWarmNormalStrongWarmSameYesSunnyWarmHighStrongWarmSameYesRainyColdHighStrongW
住在天上的云
·
2024-02-10 17:19
机器学习
机器学习
笔记
决策树
【
机器学习笔记
】回归算法
回归算法文章目录回归算法1线性回归2损失函数3多元线性回归4线性回归的相关系数1线性回归回归分析(Regression)回归分析是描述变量间关系的一种统计分析方法例:在线教育场景因变量Y:在线学习课程满意度自变量X:平台交互性、教学资源、课程设计预测性的建模技术,通常用于预测分析,预测的结果多为连续值(也可为离散值,二值)线性回归(Linearregression)因变量和自变量之间是线性关系,就
住在天上的云
·
2024-02-10 17:19
机器学习
笔记
回归
线性回归
人工智能
神经网络和深度学习(一):深度学习概论
type=detail&id=2001701005&cid=20016940041、什么是神经网络我们来看一个简单的预测房价的例子,
吴恩达
老师还真是喜欢用这个例子呢。
文哥的学习日记
·
2024-02-10 11:03
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他