模型评估与模型选择(训练误差和测试误差+过拟合)| 15mins 入门 | 《统计学习方法》学习笔记(四)
模型评估与模型选择当损失函数给定时,基于损失函数的模型的训练误差(trainingerror)和模型的测试误差(testerror)就自然成为学习方法评估的标准.训练误差的大小,对判定给定的问题是不是一个容易学习的问题是有意义的,但本质上不重要。测试误差反映了学习方法对未知的测试数据集的预测能力,是学习中的重要概念,显然,给定两种学习方法,测试误差小的方法具有更好的预测能力,是更有效的方法。泛化能