机器学习——特征工程——数据的标准化(Z-Score,Maxmin,MaxAbs,RobustScaler,Normalizer)
数据标准化是一个常用的数据预处理操作,目的是处理不同规模和量纲的数据,使其缩放到相同的数据区间和范围,以减少规模、特征、分布差异等对模型的影响。比如线性回归模型、逻辑回归模型或包含矩阵的模型,它们会受到输入尺度(量纲)的影响。相反,那些基于树的模型则根本不在乎输入尺度(量纲)有多大。如果模型对输入特征的尺度(量纲)很敏感,就需要进行特征缩放。顾名思义,特征缩放会改变特征的尺度,有些人将其称为特征归