题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4568
思路:首先spfa预处理出每对宝藏之间的最短距离以及宝藏到边界的最短距离,然后dp[state][u]表示当前在点u,状态为state的最短距离,然后更新就行。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> using namespace std; const int MAX_N = (233); const int inf = 0x3f3f3f3f; int N, M, n, g[MAX_N][MAX_N]; struct Point { int x, y; } point[14]; int d[14][14], dd[14], dp[(1 << 14) + 4][14]; //d[i][j]表示宝藏i到宝藏j之间的最短距离,dd[i]表示宝藏i到边界的最短距离 bool vis[MAX_N][MAX_N]; struct Node { int x, y, step; Node () {} Node (int _x, int _y, int _step) : x(_x), y(_y), step(_step) {} }; int dist[MAX_N][MAX_N], dir[4][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} }; void spfa(int index) { for (int i = 0; i < N; ++i) { for (int j = 0; j < M; ++j) dist[i][j] = inf, vis[i][j] = false; } queue<pair<int, int > > que; que.push(make_pair(point[index].x, point[index].y)); dist[point[index].x][point[index].y] = 0; while (!que.empty()) { pair<int, int > p = que.front(); que.pop(); vis[p.first][p.second] = false; for (int i = 0; i < 4; ++i) { int x = p.first + dir[i][0]; int y = p.second + dir[i][1]; if (g[x][y] == -1) continue; if (x < 0 || x >= N || y < 0 || y >= M) { dd[index] = min(dd[index], dist[p.first][p.second] + g[point[index].x][point[index].y]); continue; } if (dist[p.first][p.second] + g[x][y] < dist[x][y]) { dist[x][y] = dist[p.first][p.second] + g[x][y]; if (!vis[x][y]) { vis[x][y] = true; que.push(make_pair(x, y)); } } } } } int main() { int Cas; scanf("%d", &Cas); while (Cas--) { scanf("%d %d", &N, &M); for (int i = 0; i < N; ++i) { for (int j = 0; j < M; ++j) scanf("%d", &g[i][j]); } scanf("%d", &n); for (int i = 0; i < n; ++i) scanf("%d %d", &point[i].x, &point[i].y); for (int i = 0; i < (1 << n); ++i) { for (int j = 0; j < n; ++j) dp[i][j] = inf; } memset(dd, 0x3f, sizeof(dd)); for (int i = 0; i < n; ++i) { spfa(i); for (int j = 0; j < n; ++j) { if (i == j) d[i][j] = 0; else d[i][j] = dist[point[j].x][point[j].y]; } dp[1 << i][i] = dd[i]; } for (int s = 0; s < (1 << n); ++s) { for (int i = 0; i < n; ++i) { if ( dp[s][i] != inf && ((1 << i) & s)) { for (int j = 0; j < n; ++j) if (i != j && (!((1 << j) &s))) { dp[s | (1 << j)][j] = min(dp[s | (1 << j)][j], dp[s][i] + d[i][j]); } } } } int ans = inf; for (int i = 0; i < n; ++i) { ans = min(ans, dp[(1 << n) - 1][i] + dd[i] - g[point[i].x][point[i].y]); } printf("%d\n", ans); } return 0; }