多维空间内过 n + 1 个点的空间的性质

设有 n+1 (nN,n1) n + 1   ( n ∈ N , n ≥ 1 ) 个点 {αi,iN,1in+1} { α i , i ∈ N , 1 ≤ i ≤ n + 1 } , βi=αiαn+1,1in. β i = α i − α n + 1 , 1 ≤ i ≤ n .

引理一

{n+1i=1xiαi:n+1i=1xi=1}={ni=1xiβi+αn+1,xiR} { ∑ i = 1 n + 1 x i α i : ∑ i = 1 n + 1 x i = 1 } = { ∑ i = 1 n x i β i + α n + 1 , x i ∈ R }

证明:

n+1i=1xi=1xn+1=1ni=1xi ∑ i = 1 n + 1 x i = 1 ⇔ x n + 1 = 1 − ∑ i = 1 n x i 得:
n+1i=1xiαi ∑ i = 1 n + 1 x i α i
=ni=1xiαi+xn+1αn+1 = ∑ i = 1 n x i α i + x n + 1 α n + 1
=ni=1xiαi+(1ni=1xi)αn+1 = ∑ i = 1 n x i α i + ( 1 − ∑ i = 1 n x i ) α n + 1
=ni=1xi(αiαn+1)+αn+1 = ∑ i = 1 n x i ( α i − α n + 1 ) + α n + 1
=ni=1xiβi+αn+1 = ∑ i = 1 n x i β i + α n + 1
反之亦然。

引理二

{n+1i=1xiαi=0n+1i=1xi=0 { ∑ i = 1 n + 1 x i α i = 0 ∑ i = 1 n + 1 x i = 0 有非零解 。
ni=1xiβi=0 ⇔ ∑ i = 1 n x i β i = 0 有非零解。
{βi=αiαn+1,iN,1in} ⇔ { β i = α i − α n + 1 , i ∈ N , 1 ≤ i ≤ n } 线性相关。

证明:

n+1i=1xi=0xn+1=ni=1xi ∑ i = 1 n + 1 x i = 0 ⇔ x n + 1 = − ∑ i = 1 n x i 得:
n+1i=1xiαi ∑ i = 1 n + 1 x i α i
=ni=1xiαi+xn+1αn+1 = ∑ i = 1 n x i α i + x n + 1 α n + 1
=ni=1xiαi+(ni=1xi)αn+1 = ∑ i = 1 n x i α i + ( − ∑ i = 1 n x i ) α n + 1
=ni=1xi(αiαn+1) = ∑ i = 1 n x i ( α i − α n + 1 )
=ni=1xiβi = ∑ i = 1 n x i β i

定义

{n+1i=1xiαi=0n+1i=1xi=0 { ∑ i = 1 n + 1 x i α i = 0 ∑ i = 1 n + 1 x i = 0 无非零解 ,则过 这 n+1 n + 1 个点的 n n 维空间为:
{n+1i=1xiαi,n+1i=1xi=1} { ∑ i = 1 n + 1 x i α i , ∑ i = 1 n + 1 x i = 1 } {ni=1xiβi+αn+1,xiR} { ∑ i = 1 n x i β i + α n + 1 , x i ∈ R }

注: 由引理一, 整两个集合是相等的。

推论一

{n+1i=1xiyi=0n+1i=1xi=0 { ∑ i = 1 n + 1 x i y i = 0 ∑ i = 1 n + 1 x i = 0 无非零解 ,则过这 n+1 n + 1 个点 {yi,iN,1in+1} { y i , i ∈ N , 1 ≤ i ≤ n + 1 } 有且只有一个 n n 维空间。

证明:

(1) 存在性:
n+1 n + 1 个点在平面 {n+1i=1xiyi,n+1i=1xi=1} { ∑ i = 1 n + 1 x i y i , ∑ i = 1 n + 1 x i = 1 } 上。这是因为: jN,1jn+1, ∀ j ∈ N , 1 ≤ j ≤ n + 1 , xi=δij x i = δ i j , 则 yj=n+1i=1xijyi y j = ∑ i = 1 n + 1 x i j y i
(2) 唯一性:
n+1 n + 1 个点在一个平面 {n+1i=1xiαi,n+1i=1xi=1} { ∑ i = 1 n + 1 x i α i , ∑ i = 1 n + 1 x i = 1 } 上,设
Y=(y1,,yn+1), Y = ( y 1 , ⋯ , y n + 1 ) ,
A=(α1,,αn+1), A = ( α 1 , ⋯ , α n + 1 ) ,
yi=n+1j=1αjxij,n+1j=1xij=1,iN,1in+1, y i = ∑ j = 1 n + 1 α j x i j , ∑ j = 1 n + 1 x i j = 1 , i ∈ N , 1 ≤ i ≤ n + 1 ,
X=(xi,j)(n+1)×(n+1), X = ( x i , j ) ( n + 1 ) × ( n + 1 ) ,
1n+1=(1,,1)1×(n+1), 1 n + 1 = ( 1 , ⋯ , 1 ) 1 × ( n + 1 ) ,
x=(x1,,xn+1), x = ( x 1 , ⋯ , x n + 1 ) ,
则: Y=AX,1n+1X=1n+1 Y = A X , 1 n + 1 X = 1 n + 1
由于关于 x x 的方程 {Yx=01n+1x=0 { Y x = 0 1 n + 1 x = 0 无非零解, 也就是 {AXx=01n+1x=0 { A X x = 0 1 n + 1 x = 0 无非零解,因此 Xx=0 X x = 0 无非零解。否则, 若存在 x0 x ≠ 0 , 使得 Xx=0 X x = 0 , 则 {AXx=01n+1x=(1n+1X)x=1n+1(Xx)=0 { A X x = 0 1 n + 1 x = ( 1 n + 1 X ) x = 1 n + 1 ( X x ) = 0 , 与 {Yx=01n+1x=0 { Y x = 0 1 n + 1 x = 0 无非零解矛盾。
因此 X X 可逆,于是:
A=YX1,1n+1=1n+1X1 A = Y X − 1 , 1 n + 1 = 1 n + 1 X − 1
因此对于任意 1n+1z=1 1 n + 1 z = 1
Yz=(AX)z=A(Xz), Y z = ( A X ) z = A ( X z ) ,
1n+1(Xz)=(1n+1X)z=1n+1z=1 1 n + 1 ( X z ) = ( 1 n + 1 X ) z = 1 n + 1 z = 1
同样,
Az=YX1z=Y(X1z), A z = Y X − 1 z = Y ( X − 1 z ) ,
1n+1(X1z)=(1n+1X1)z=1n+1z=1 1 n + 1 ( X − 1 z ) = ( 1 n + 1 X − 1 ) z = 1 n + 1 z = 1

推论二

{n+1i=1xiyi=0n+1i=1xi=0 { ∑ i = 1 n + 1 x i y i = 0 ∑ i = 1 n + 1 x i = 0 无非零解 ,这 n+1 n + 1 个点 {yi,iN,1in+1} { y i , i ∈ N , 1 ≤ i ≤ n + 1 } 在一个空间内,则这个空间的维度 n ≥ n ,且过这 n+1 n + 1 个点 {yi,iN,1in+1} { y i , i ∈ N , 1 ≤ i ≤ n + 1 } n n 维空间是这个空间的子空间。

推论三

{n+1i=1xiyi=0n+1i=1xi=0 { ∑ i = 1 n + 1 x i y i = 0 ∑ i = 1 n + 1 x i = 0 有非零解 过这 n+1 n + 1 个点有一个 m m (mN,m<n) ( m ∈ N , m < n ) 维空间。

推论四

过这 n+1 n + 1 个点有一个 m m (mN,mn) ( m ∈ N , m ≤ n ) 维空间。

你可能感兴趣的:(高等代数)