- LU分解算法(串行、并行)
清榎
高性能计算并行程序高性能计算数值分析
一、串行LU分解算法(详细见MIT线性代数)1.LU分解矩阵分解LU分解分解形式L(下三角矩阵)、U(上三角矩阵)目的提高计算效率前提(1)矩阵A为方阵;(2)矩阵可逆(满秩矩阵);(3)消元过程中没有0主元出现,也就是消元过程中不能出现行交换的初等变换LU分解其实就是将线性方程组:Ax=bAx=bAx=b分解为:LUx=bLUx=bLUx=b这样一来就会有:{Ly=bUx=y\begin{cas
- 线性代数-MIT 18.06-6(a)
儒雅的钓翁
数学基础线性代数矩阵机器学习
文章目录26.对称矩阵及正定性对称矩阵对称矩阵的特性:矩阵分解(谱定理)定理证明和复数推广对称矩阵和投影矩阵正定性性质1性质227.复数矩阵和快速傅里叶变换复数向量复数矩阵对称性正交性傅里叶矩阵快速傅里叶变换本文在学习《麻省理工公开课线性代数MIT18.06LinearAlgebra》总结反思形成视频链接:MITB站视频笔记部分:总结参考子实26.对称矩阵及正定性对称矩阵对称矩阵的特性:特征值为实
- 数学基础 -- 线性代数之矩阵的秩
sz66cm
线性代数矩阵机器学习
矩阵的秩:概念与应用1.概述矩阵的秩(Rank)是线性代数中的一个基本概念,它衡量了矩阵中行或列向量的线性无关性。矩阵的秩在解线性方程组、矩阵分解、确定线性变换的维度等方面起着重要作用。2.矩阵的秩的定义矩阵的秩可以从以下几个角度进行定义:行秩:矩阵的行秩是指矩阵中最大线性无关行向量的个数。列秩:矩阵的列秩是指矩阵中最大线性无关列向量的个数。在一个矩阵中,行秩和列秩总是相等的,因此我们通常将矩阵的
- 【Python机器学习】NLP词频背后的含义——隐性语义分析
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能开发语言
隐性语义分析基于最古老和最常用的降维技术——奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。SVD的一个应用是求逆矩阵。一个矩阵可以分解成3个最简单的方阵,然后对这些方阵求转置后再把它们相乘,就得到了原始矩阵的逆矩阵。它为我们提供了一个对大型复杂矩阵求逆的捷径。SVD适用于桁架结构的应力和应变分析等机械工程问题,它对电气工程中的电路分析也很有用,它甚至在数据科学中被用于基
- Python(C)图像压缩导图
亚图跨际
PythonC/C++交叉知识傅里叶压缩制作树结构象限量化模型有损压缩压缩解压缩算法矩阵分解
要点傅里叶和小波变换主成分分析彩色图压缩制作不同尺寸图像K均值和生成式对抗网络压缩无损压缩算法压缩和解压缩算法离散小波变换压缩树结构象限算法压缩矩阵分解有损压缩算法量化模型有损压缩算法JPEG压缩解压缩算法Python图像压缩图像压缩可以是有损的,也可以是无损的。无损压缩是档案用途的首选,通常用于医学成像、技术图纸、剪贴画或漫画。有损压缩方法,尤其是在低比特率下使用时,会产生压缩伪影。有损方法特别
- 主成分分析(PCA)附Python实现
不染53
数学建模数学建模python算法
主成分分析矩阵分解特征值和特征向量特征值分解奇异值分解主成分分析(PCA)Python实现主成分分析方法(PrincipalComponentAnalysis,PCA)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,将多个变量压缩为少数几个综合指标(称为主成分),是一种使用最广泛的数据降维算法。此外,由于主成分分析独特的性质,压缩之后的主成分之间线性无关,因此
- 数学基础(四)
几两春秋梦_
数学基础算法人工智能机器学习
一、特征值与特征向量特征空间:特征向量的应用:特征值表达了重要程度且和特征向量所对应,那么特征值大的就是主要信息了,基于这点我们可以提供各种有价值的信息。二、SVD矩阵分解基变换:特征值分解:SVD:离散型随机变量概率函数(概率质量函数):连续型随机变量似然函数
- OSQP文档学习
Big David
决策规划控制数值优化osqpc数值优化求解器
OSQP官方文档1QSQP简介OSQP求解形式为的凸二次规划:x∈Rnx∈R^nx∈Rn:优化变量P∈S+nP∈S^n_+P∈S+n:半正定矩阵特征(1)高效:使用了一种自定义的基于ADMM的一阶方法,只需要在设置阶段进行单个矩阵分解。(2)鲁棒:该算法设置之后不需要对问题数据进行假设(问题只需要是凸的)。(3)原始/对偶不可行问题:当问题是原始或对偶不可行时,OSQP会检测到它。这是第一个基于一
- 矩阵分解——QR分解
patrickpdx
矩阵论
文章目录满秩方阵的QR分解矩阵QR分解例题列满秩矩阵的QR分解满秩方阵的QR分解可以看到,该证明过程是构造性的,即通过构造出了QQQ,RRR的方式,证明了QR分解的存在性,不仅证明了存在性,还为我们提供了QR分解中QQQ和RRR的求解方法矩阵QR分解例题摘自《矩阵论》程云鹏,西安交通大学,1999年6月第2版,p203列满秩矩阵的QR分解摘自《矩阵论教程》第二版张绍飞2.1节
- 机器学习入门--奇异值分解原理与实践
Dr.Cup
机器学习入门机器学习人工智能
奇异值分解奇异值分解(SingularValueDecomposition,SVD)是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。奇异值分解数学原理奇异值分解是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。具体来说,对于一个m
- 如何从矩阵分解MF的角度理解因子分解机FM
程序媛的学习笔记
昨天在了解FM[1]模型的时候一直没有弄清楚这个模型如何应用到推荐场景中,也没有弄清楚FM和MF这两个模型之间的关系,在此感谢师兄的指导。在分享FM模型之前,先简单的介绍一下MF[2]模型。矩阵分解是推荐系统中的核心技术,我们将用户和物品构造成一个二维矩阵(后称U-I矩阵),其中每一行代表一个用户,每一列代表一个物品,由于U-I矩阵的稀疏性,许多用户对物品没有过相应的评分,那么预测某一个用户对某一
- 图神经网络与图表示学习: 从基础概念到前沿技术
cooldream2009
AI技术知识图谱神经网络学习php
目录前言1图的形式化定义和类型1.1图的形式化定义1.2图的类型2图表示学习2.1DeepWalk:融合语义相似性与图结构2.2Node2Vec:灵活调整随机游走策略2.3LINE:一阶与二阶邻接建模2.4NetMF:矩阵分解的可扩展图表示学习2.5Metapath2Vec:异构图的全面捕捉3图神经网络系列3.1基本组成和分类3.2典型模型4图神经网络预训练4.1基于生成模型的预训练4.2基于对比
- python 中和机器学习相关的库:numpy scipy pandas scikit-learn tensorflow-gpu matplotlib
Hi-Lu
pythonpython机器学习数据分析人工智能数据结构
numpy:python科学计算的基础包,随机数生成、快速高效的多维数组对象ndarray,用于对数组执行元素级计算,直接对数组执行数学运算的函数;用于读写硬盘上基于数组的数据集工具等。scipy:微积分、矩阵分解、函数优化器(最小化器)、根查找算法、信号处理工具、稀疏矩阵和稀疏线性系统求解器。pandas:非常重要的库,提供了快速便捷处理结构化数据的大量数据结构和函数;用得最多的pandas对象
- Pytorch-统计学方法、分布函数、随机抽样、线性代数运算、矩阵分解
小旺不正经
人工智能线性代数pytorch矩阵人工智能
Tensor中统计学相关的函数torch.mean()#返回平均值torch.sum()#返回总和torch.prod()#计算所有元素的积torch.max()#返回最大值torch.min()#返回最小值torch.argmax()#返回最大值排序的索引值torch.argmin()#返回最小值排序的索引值torch.std()#返回标准差torch.var()#返回方差torch.media
- 【数学和算法】SVD奇异值分解原理、以及在PCA中的运用
Mister Zhu
数学和算法数学
详细的介绍请参考这篇博客:SVD奇异值分解SVD奇异值分解是用来对矩阵进行分解,并不是专门用来求解特征值和特征向量。而求解特征值和求解特征向量,可以选择使用SVD算法进行矩阵分解后,再用矩阵分解后的结果得到特征值和特征向量。我们先回顾一下SVD:PCA降维需要求解协方差矩阵的特征值和特征向量,而求解协方差矩阵1m∗X∗XT\color{blue}\frac{1}{m}*X*X^Tm1∗X∗XT的特
- 详解矩阵的LDU分解
唠嗑!
格密码的数学基础算法网络安全线性代数
目录一.矩阵分解二.解方程三.例题说明四.矩阵的LDU分解五.矩阵三角分解的唯一性一.矩阵分解其实我们可以把一个线性系统(LinearSystem)看成两个三角系统(TriangularSystems),本文章将解释为什么可以这么看待解线性方程组,以及这样理解到底有什么好处。我们知道高斯消元法其实跟矩阵的三角分解有关,如下:A=LU其中,A为任意方阵,L为下三角矩阵且对角线处元素均为1,U为上三角
- 人工智能之数学(二) ------ 矩阵分解
千喜Ya
一.目的理论上都是为了简化计算1.比如求解矩阵的多次幂可用矩阵分解方法实现快速手酸2.用于求解线性方程,比如正交分解就可以用来求解不相容的最小二乘方程组(没有确切的解)比如Ax=b:用A的列向量线性组合表示b,求出线性组合的各个系数(组成x),对于b来说,如果b本身不在A的列向量线性组合组成的线性空间中,那么线性方程组就是不相容的,此时要求一个最小二乘解增广矩阵(A,b)的秩与矩阵A的秩相等的时候
- 三维重建(6)--多视图几何
Struart_R
三维重建人工智能三维重建计算机视觉
目录一、运动恢复问题(SfM)二、欧式结构恢复问题1、概述2、算法流程3、本质矩阵分解4、欧式结构恢复歧义三、仿射结构恢复问题1、概述2、因式分解法3、仿射结构恢复歧义四、透视结构恢复问题1、概述2、透视结构恢复歧义3、代数方法4、捆绑调整五、P3P问题六、随机采样一致性(RANSAC)一、运动恢复问题(SfM)运动恢复问题:通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像
- 数学建模day17-SVD和图形处理
WenJGo
数学建模数学建模
注:本文源于数学建模学习交流相关公众号观看学习视频后所作奇异值分解(SingularValueDecomposition)是线性代数中一种重要的矩阵分解,其在图形学、统计学、推荐系统、信号处理等领域有重要应用。本讲我们将介绍奇异值分解在图形压缩中的运用,并将简单介绍下Matlab对于图形和视频的处理。目录线性代数基础知识回顾奇异值分解三个引理例子U的计算V的计算Σ的计算SVD的证明思路利用SVD对
- 单细胞分析实录(17): 非负矩阵分解(NMF)代码演示
TOP生物信息
本次演示使用的数据来自2017年发表于Cell的头颈鳞癌单细胞文章:Single-CellTranscriptomicAnalysisofPrimaryandMetastaticTumorEcosystemsinHeadandNeckCancer。本次演示提供处理好的测试数据,以及所有代码,一共6个脚本(我目前写得最详细的教程,也是全网少有的)。数据的预处理就不演示了,预处理的代码存放在0.pre
- 基于图神经网络与深度学习的商品推荐算法
谦谦菜鸟
深度学习机器学习人工智能
传统做法现阶段局限创新方法结果相关工作目前推荐算法基于矩阵分解的推荐算法基于深度学习的推荐算法基于图神经网络的推荐算法创新点模型设计本文的核心任务是训练出一个模型LGDL模型框架嵌入层ID特征嵌入评论文本特征嵌入前向传播层关联关系提取偏好特征提取评分预测层模型优化传统做法利用深度学习方法从用户ID、评论文本等数据中提取其中所隐藏的用户物品特征,根据该特征预测用户对新物品的打分从而给出推荐是传统推荐
- 详解矩阵的三角分解A=LU
唠嗑!
格密码的数学基础算法线性代数网络安全
目录一.求解Ax=b二.上三角矩阵分解三.下三角矩阵分解四.矩阵的三角分解举例1:矩阵三角分解举例2:三角分解的限制举例3:主元和乘法因子均为1举例4:U为单位阵小结一.求解Ax=b我们知道高斯消元法可以对应矩阵的基础变换。先来看我们比较熟悉的Ax=b模型,如下:解这个方程很简单,只需要三步高斯消元步骤,分别乘以2,-1,-1.第一步:第二行减去第一行乘以2倍;第二步:第三行减去第一行乘以-1;第
- 推荐系统|2.1 协同过滤与矩阵分解简介 2.2 协同过滤
晓源Galois
推荐系统推荐算法
文章目录显式特征和隐式特征协同过滤基于用户的协同过滤基于商品的协同过滤显式特征和隐式特征可以类比感性认识和理性认识。显式特征是指可以直接获取,并且可以用作判断的依据。而隐式特征是指需要进一步加工分析提炼,才能作为判断的依据。比如说评论,评论包括好评和差评,需要进一步分析其情感倾向,才会有所意义。协同过滤基于用户的协同过滤比如说用户C买了商品a、b、c、d。而用户A只买了商品b、c,可以预设用户A将
- 推荐系统|2.4 矩阵分解的目的和效果
晓源Galois
推荐系统推荐算法
文章目录矩阵分解矩阵分解的必要性和方法隐向量矩阵分解矩阵分解的必要性和方法比如原本是一个m×nm\timesnm×n规模大小的矩阵,经过分解后可得到两个矩阵一个是m×km\timeskm×k,另外一个是k×nk\timesnk×n,于是总占用空间为(m+n)×k(m+n)\timesk(m+n)×k注意,分解是以一种近似的情况来进行分解。由于分解完,再复原回去,其实也可以将原本空白的位置填上数据,
- 【学习笔记】mark一篇推荐系统的文章
Jweeeeee
在做一道RNA中Dropout事件填充的建模题,里面要用到低秩矩阵的填充,基于矩阵分解的填充方法参考了推荐系统的相关算法。mark一篇推荐系统的文章基于矩阵分解的推荐算法
- 基于WEKWS模型的语音唤醒关键词识别
伪_装
语音识别深度学习人工智能机器学习深度学习语音语音识别语音唤醒
一、模型描述1.1论文解读本文所使用的模型网络结构继承自论文《CompactFeedforwardSequentialMemoryNetworksforSmall-footprintKeywordSpotting》,文中研究了将低秩矩阵分解与传统FSMN相结合的紧凑型前馈顺序记忆网络(cFSMN)用于远场关键字检测任务。此外,文中还分析了其结构参数的影响,为了降低计算成本,将多帧预测(MFP)应用
- Factorization Meets the Neighborhood: a MultifacetedCollaborative Filtering Model 阅读笔记
河南老♂乡唐可可
#推荐算法推荐算法算法机器学习
0.奇异值分解SingularValueDecompositionSVD是将一个m×nm\timesnm×n的矩阵分解成三个矩阵的乘积即A=UΣVTA=U\SigmaV^TA=UΣVT其中U,VU,VU,V分别为m×m,n×nnm\timesm,n\timesnnm×m,n×nn的矩阵Σ\SigmaΣ是一个m×nm\timesnm×n的对角矩阵其中UUU,是左奇异矩阵,为AATAA^TAAT的所有
- 机器学习中的SVD总结
一只胖猪猪
1.矩阵分解1.1矩阵分解的作用矩阵填充(通过矩阵分解来填充原有矩阵,例如协同过滤的ALS算法就是填充原有矩阵)清理异常值与离群点降维、压缩个性化推荐间接的特征组合(计算特征间相似度)1.2矩阵分解的方法(1)特征值分解(2)PCA(PrincipalComponentAnalysis)分解,作用:降维、压缩。(3)SVD(SingularValueDecomposition)分解,也叫奇异值分解
- 【MATLAB】SVMD_LSTM神经网络时序预测算法
Lwcah
MATLAB时序预测算法神经网络matlablstm
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~1基本定义SVMD-LSTM神经网络时序预测算法是一种结合了单变量经验模态分解(SingularValueDecomposition,SVD)和长短期记忆神经网络(LSTM)的时间序列预测方法。SVD是一种矩阵分解方法,可以将一个矩阵分解为三个部分:左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵。在时间序列分析中,可以将时间序列数据转化为矩
- 用于高光谱和多光谱数据融合的耦合非负矩阵分解-解混合
油豆皮
矩阵线性代数python计算机视觉
论文:CoupledNonnegativeMatrixFactorizationUnmixingforHyperspectralandMultispectralDataFusion摘要:本文提出了耦合非负矩阵分解解混合(CNMF),用于低空间分辨率高光谱和高空间分辨率多光谱数据的融合,以产生具有高空间和光谱分辨率的融合数据。CNMF算法将高光谱数据和多光谱数据交替地分解为端元矩阵和丰度矩阵。端元矩
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro