- 算法学习笔记:概率与期望
Plozia
数学/数论学习笔记+专项训练
概率与期望1.前言2.定义3.理解4.期望方程5.总结1.前言概率我们很熟,在数学课本里面我们就已经学到过概率的基本定义以及计算方式。期望我们不熟,他与概率密切相关,计算方式基于概率。2.定义概率的计算方式不必我多说,各位在数学课中都有了解。而期望,从某种意义上来讲其实就是一个加了权值的概率。我将使用一个例子来说明期望是什么:假设某一天小z有一场满分为100分的数学考试。他妈妈说:“儿子,如果你能
- [算法学习笔记](超全)概率与期望
L('ω')┘脏脏包└('ω')」
c++题解算法
引子先来讲个故事······话说在神奇的OI大陆上,有一只papermouse有一天,它去商场购物,正好是11.11,商店有活动它很荣幸被选上给1832抽奖在抽奖箱里,有3个篮蓝球,12个红球papermouse能抽3次蒟蒻的papermouse就疑惑了:抽到至少1个篮蓝球的概率是多少???Answer:总共有15个球只抽到1个篮蓝球的概率是0.435165(很好理解吧,在4个篮蓝球里取一个,再在
- 专题·数学概率与期望【including 条件概率,贝叶斯定理, 全概率公式,数学期望, 绿豆蛙的归宿
樱狸❀
数论数论数学期望概率
初见安~~~又开启数论的探索啦~~:)一。概率1.基本定义在概率论中,我们把一个随机事件的一个可能结果称为其样本点,其所有样本点构成的集合称之为样本空间。(注意,随机事件并不一定只有一种可能结果)在样本空间中,我们称事件所包含的子集为随机事件。概率的定义就很简单了,我们也都知道样本空间中的任意随机事件的概率不会超过1不会小于0.就比如我们抛硬币连续扔三次(不考虑侧面稳落地),有8中可能:AAA,A
- 第十六章 隐马尔科夫模型
小酒馆燃着灯
机器学习手写AI深度学习机器学习
文章目录简介概念随机变量与随机过程马尔可夫链隐含马尔可夫模型两个基本假设三个基本问题算法观测序列生成算法概率计算算法前向概率与后向概率前向算法后向算法小结概率与期望学习问题监督学习方法Baum-Welch算法预测算法近似算法(MAP)维特比算法(Viterbi)简介动态贝叶斯网络的最简单实现隐马尔可夫模型。HMM可以看成是一种推广的混合模型。序列化建模,打破了数据独立同分布的假设。有些关系需要理清
- Algorithm Review 9 数学相关
Log_x
学习笔记概率论算法
概率与期望结论1设xxx为离散随机变量,且x∈Nx\in\mathbbNx∈N,则E(x)=∑i=1∞i⋅P(x=i)=∑i=1∞P(x≥i)E(x)=\sum\limits_{i=1}^{\infty}i·P(x=i)=\sum\limits_{i=1}^{\infty}P(x\gei)E(x)=i=1∑∞i⋅P(x=i)=i=1∑∞P(x≥i)。树上随机游走给定一棵树,从树中的某点xxx出发,
- SPSS卡方检验结果解读详解
nekonekoboom
SPSS
卡方检验(Chi-SquareTest)是由Pearson提出的一种统计方法,在一定的置信水平和自由度下,通过比较卡方统计量和卡方分布函数概率值,判断实际概率与期望概率是否吻合,通过比较理论概率和实际概率的吻合程度,可检验两个分类变量的相关性。用户可利用SPSS软件方便的完成卡方检验,在SPSS软件中,默认H0成立,即观察频数和实际频数无差别,即两组变量相互不产生影响,两组变量不相关,如果检验P值
- 算法学习笔记:概率/期望 DP
Plozia
动态规划学习笔记+专项训练算法动态规划数据结构
算法学习笔记:概率/期望DP1.前言2.例题3.练习题1.前言概率/期望DP,是一种DP,用来计算概率或者是期望。其实我认为这种DP就是计算期望的,毕竟概率可以看成代价为1的期望。没有学过期望的读者可以看看这篇文章:算法学习笔记:概率与期望而概率/期望DP,最关键的就是期望方程。下面看一道例题。2.例题CF1265EBeautifulMirrors以这题为例,详细讲解期望DP的一般套路。为了方便,
- 隐马尔可夫模型 (hidden Markov model, HMM)
连理o
机器学习概率论自然语言处理机器学习
本文为《统计学习方法》的读书笔记目录隐马尔可夫模型的基本概念隐马尔可夫模型的定义观测序列的生成过程隐马尔可夫模型的3个基本问题概率计算算法直接计算法前向算法(forwardalgorithm)后向算法(backwardalgorithm)一些概率与期望值的计算学习算法监督学习方法Baum-Welch算法(无监督学习方法)预测算法近似算法维特比算法(Viterbialgorithm)隐马尔可夫模型的
- 机器学习算法(十七):隐马尔科夫模型(HMM)
意念回复
机器学习机器学习算法机器学习
目录1隐马尔科夫模型1.1模型概念1.2定义1.3隐马尔科夫模型的两个性质1.4盒子与球模型1.5三个基本问题2概率计算算法2.1直接计算法2.2前向算法2.3后向算法2.4一些概率与期望值的计算3学习算法3.1监督学习方法3.2Baum-Welch算法3.3Baum-Welch模型参数估计公式4预测算法4.1近似算法4.2维比特算法5总结马尔科夫链:机器学习算法(十六):马尔科夫链_意念回复的博
- 机器学习面试题——朴素贝叶斯
冰露可乐
机器学习深度学习朴素贝叶斯贝叶斯公式大厂笔试面试题
机器学习面试题——朴素贝叶斯提示:这些知识点也是大厂笔试经常考的题目,我记得阿里和京东就考!!!想必在互联网大厂就会用这些知识解决实际问题朴素贝叶斯介绍一下朴素贝叶斯优缺点贝叶斯公式朴素贝叶斯中的“朴素”怎么理解?什么是拉普拉斯平滑法?朴素贝叶斯中有没有超参数可以调?你知道朴素贝叶斯有哪些应用吗?朴素贝叶斯对异常值敏不敏感?频率学派与贝叶斯学派的差别概率与期望的公式先验概率与后验概率文章目录机器学
- [NOI2005] 聪聪与可可
Sito_Ask
NOI2005聪聪与可可~~机器猫の传送门~~期望DP+记搜聪聪一直在向可可方向追,所以不会回到原处,不具有后效性,考虑用概率与期望DP+记忆化搜索求解用dp[x][y]表示可可在x点,聪聪在y点时步数的期望值判断边界①当x==y时结束(此时毫无疑问的,dp[x][y]=0)②当
- 2019暑期计划 / 每日刷题记录
weixin_30951743
计划##1.复习与提高###动态规划-数位DP-树形DP###图论-Tarjan-拓扑序的应用-树链剖分-点分治-树上距离-网络流/费用流###数据结构-平衡树-主席树-ST表###数论-整数研究-组合数学-概率与期望##2.新知学习###离线算法-CDQ分治-整体二分###数据结构-线段树扩展操作-树套树-LCT###图论-基环树每日刷题记录转载于:https://www.cnblogs.com
- 一文读懂NLP之隐马尔科夫模型(HMM)详解加python实现
Elenstone
NLP算法详解机器学习算法nlp
一文读懂NLP之隐马尔科夫模型(HMM)详解加python实现1隐马尔科夫模型1.1HMM解决的问题1.2HMM模型的定义1.2.1HMM的两个假设1.2.2HMM模型1.3HMM模型的三个基本问题2概率计算问题及算法2.1直接计算法2.2前向算法2.3后向算法2.4一些概率与期望值的计算3模型训练问题及算法3.1监督学习——最大似然估计3.2非监督学习——EM算法3.3Baum-Welch算法4
- 真正的决策都是不确定性决策
蓝色多莉
阅读笔记第126/365天今日阅读《升维——不确定时代的决策博弈》作者:【澳】王珞第3章:真正的决策都是不确定性决策一、企业利润来源于不确定性。1、什么是不确定性?风险是能被计算概率与期望值的是基于已经发生的事件的统计,而不确定性是无法被预见的,即使能被预见,其发生的概率也不能被计算的未来事件。不确定性事件是不可预见,没有概率的,包括灾难、命运、前景等一切未来可能发生的事件,是每个个体未来都要共同
- 解题报告(十七)概率与期望(概率论)(ACM / OI)
繁凡さん
【解题报告】-超高质量题单+题解概率与期望《概率论》
繁凡出品的全新系列:解题报告系列——超高质量算法题单,配套我写的超高质量题解和代码,题目难度不一定按照题号排序,我会在每道题后面加上题目难度指数(1∼51\sim51∼5),以模板题难度111为基准。这样大家在学习算法的时候就可以执行这样的流程:%阅读我的【学习笔记】/【算法全家桶】学习算法⇒\Rightarrow⇒阅读我的相应算法的【解题报告】获得高质量题单⇒\Rightarrow⇒根据我的一句
- 概率与期望习题总结
总结概率题一般正着推期望题一般倒着推图上的问题如果是\(DAG\)可以直接转移否则可能要用到高斯消元\(20\)的数据范围大概率是装压有些看似无限循环的式子其实可以倒着递推1、骰子基础版题目描述众所周知,骰子是一个六面分别刻有一到六点的立方体,每次投掷骰子,从理论上讲得到一点到六点的概率都是\(1/6\)。今有骰子一颗,连续投掷\(N\)次,问点数总和大于等于\(X\)的概率是多少?输入仅有一行包
- HDU 4254 A Famous Game(概率与期望)
clover_hxy
组合数学概率与期望
题目描述传送门题目大意:一个口袋里有n个红色或蓝色的球。n+1种颜色分布情况(i个红球n−i个蓝球)的概率是相等的。B从口袋中不放回地摸出了p个球,其中有q个是红色的。求B再摸一个球时,摸出的球是红色的概率。题解设Nk表示n个球中有k个红球的概率。A表示p个球中有q个红球B表示下次摸出的是红球那么P(Nk)=1n+1P(A)=C(k,q)C(n−k,p−q)C(n,p)P(B|ANk)=k−qn−
- HDU 5753 Permutation Bo (概率与期望)
等我学会后缀自动机
HDU习题集规律/递推概率论/博弈论
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5753#includeusingnamespacestd;#definedebugputs("YES");#definerep(x,y,z)for(int(x)=(y);(x)#definemk(x,y)make_pair(x,y)#definefifirst#definesesecondconstin
- 【总结】概率与期望
616156
总结数论DP高斯消元数学概率与期望
前言作为NOIP级的知识点,概率与期望算是比较困难的类型了。但其实也不是无法解决的难题。本文主要通过作者本人的刷题经历,对概率期望类题目进行总结。概率51Nod1639绑鞋带:有n根鞋带混在一起,每根鞋带有两个鞋带头。现在重复n次以下操作:随机抽出两个鞋带头,把它们绑在一起。求最终只形成一个环的概率?依次考虑每一步操作,现在已经选出来了一个头,它必须和非它所在的链的另一个头绑在一起,才能得到合法方
- 概率与期望详解!一次精通oi中的概率期望
Tyl18858230607
目录基础概念最大值不超过Y的期望概率为P时期望成功次数基础问题拿球随机游走经典问题期望线性性练习题例题选讲noip2016换教室区间交0-1边树求直径期望球染色区间翻转二位&三维凸包点数期望单选错位KILL后记@(期望与概率)基础概念随机变量:有多种可能的取值的变量万物都可以当做随机变量,包括常数,方便用\(\sum\)统计P(A):事件A发⽣的概率E(X):随机变量X的期望值,\(E(X)=Su
- 隐马尔可夫模型
tt12121221
隐马尔可夫模型隐马尔科夫模型的基本概念概率计算算法直接计算法前向算法后向算法一些概率与期望的计算学习算法Baum-Welch算法预测算法近似算法维特比算法是用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成的观测序列的过程,属于生成模型。马尔科夫模型中主要讨论三个问题:即概率计算算法、学习算法以及预测算法。隐马尔科夫模型的基本概念隐马尔科夫模型由初始概率分布、状态转移概率分布以及观测概率分
- 概率期望中高斯消元的几种用法
IDnumber4
数论题解总结
前置知识:高斯消元法博主理解浅显,只能膜piao别人的总结戳别人家的题解咳咳……还是简单介绍两句它可以用O(n3)O(n^3)O(n3)的复杂度解出n元方程组表示方法:矩阵tips:一般情况下高斯消元可能出现无解、无穷解的情况,我的做法里面没有判断,由于矩阵对角线上不会出现0。概率与期望:概率:发生的可能性期望:概率的加权平均数(表示对权值的一个预期值)eg.某图中从起点经过i步到达终点的可能性为
- codeforces 335E. Counting Skyscrapers (概率与期望)
clover_hxy
概率与期望
题目描述传送门中文题意题解先从简单的的入手吧。(1)由BOb推Alice我们需要证明的就是如果得分是2^i,那么经过的楼数也是2^i(这里经过的楼数指的是中间经过的数量+右端点)我们假设左端点一定可以连高度是i+1,编号是i的溜索,那么他的概率就是1.对于中间经过的溜索我们要求他们的高度是[1..i]之间的任意数,右端点的高度是[i+1…inf]那么中间经过的数量实际也是正无穷项。先考虑高度是[1
- 【专题】概率和期望
weixin_33923762
【参考】浅析竞赛中一类数学期望问题的解决方法信息学竞赛中概率问题求解初探WC2018冬令营课件《概率与期望及其应用》曹文【概率的定义】基本事件是一次实验可能出现的不可再分解的直接结果,样本空间Ω是全体基本事件的集合,随机事件是若干基本事件组成的集合。事件的并:事件C=”事件A与事件B至少有一个发生“,则C=A∪B。事件的交:同时发生,A∩B。一个随机事件的概率可以认为是事件占样本空间的比例(不严格
- 洛谷P1654 OSU!_概率与期望
EM-LGH
Code:#include#includeusingnamespacestd;constintmaxn=1000000+4;doublef[maxn],g[maxn],h[maxn];intmain(){intn;scanf("%d",&n);for(inti=1;i<=n;++i){doubleperc;scanf("%lf",&perc);h[i]=(h[i-1]+1)*perc;g[i]=(
- LuoguP1654 OSU! 概率与期望
EM-LGH
感觉数学期望这里始终都没太学明白.期望在任何时候都具有线性性,即$E(a+b)=E(a)+E(b)$,这个式子任何时候都成立.先考虑求$x$,$x^2$.令$x1[i]$表示$i$为$1$向前的极长$1$的期望长度,$x2[i],x3[i]$为$x^2,x^3$的期望.那么考虑从$i-1$那里转移过来,就是$E(j+1)=E(j)+E(1)=E(j)+1$.概率是$q[i]$,所以$x1[i]=(
- 老年(已退役)选手复习计划 PART2
CR1SceNT
放上来有些符号产生了一点偏差。。不知道怎么变成了问号。。比较懒懒得改了。。意会,意会。。2017.7.4:概率与期望:1.BZOJ1415:预处理p[x][y]表示,猫在x,鼠在y时猫下一步走哪里。然后记忆化搜索。2.BZOJ3450:再求一个期望长度就好解决了。斜率优化:1.BZOJ1010:推式子。2.BZOJ1096:同上。3.BZOJ3156:同上。4.BZOJ3437:同上。5.BZOJ
- [学习笔记]高斯消元求解两种特殊问题(带状矩阵/主元法)
C20190406Panda_hu
#OI知识点合辑
本文章是[学习笔记]概率与期望进阶的一部分由于时间问题我写的比较简略,所以我把大佬的总结链接贴上来了(应该没什么吧qwq)。1概述最常见的当然是随机游走问题了…•fu=∑pu,v∗(fv+wu,v)f_u=\sump_{u,v}*(f_{v}+w_{u,v})fu=∑pu,v∗(fv+wu,v)•计算期望在这个节点上,停留多少步:fu=∑pv,u∗fv+[u=S]f_u=\sump_{v,u}*f
- 【概率与期望】【暴力搜索】[Codeforces#621]题解+总结
weixin_30340775
WetSharkandOddandEven题目描述Today,WetSharkisgivennintegers.Usinganyoftheseintegersnomorethanonce,WetSharkwantstogetmaximumpossibleeven(divisibleby2)sum.Please,calculatethisvalueforWetShark.Note,thatifWet
- [CodeForces891E]Lust-生成函数-概率与期望
zlttttt
生成函数【GenerationFunction】Theory】
LustAfalsewitnessthatspeakethlies!Youaregivenasequencecontainingnintegers.Thereisavariableresthatisequalto0initially.Thefollowingprocessrepeatsktimes.Chooseanindexfrom1tonuniformlyatrandom.Nameitx.Add
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri