【USACO练习题目】奶牛接力

【题目描述】

FJ 的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目。至于进行接力跑的地点,自然是在牧场中现有的T(2 <= T <= 100)条跑道上。
农场上的跑道有一些交汇点,每条跑道都连结了两个不同的交汇点I1i和I2i(1 <= I1i <=1,000; 1 <= I2i <= 1,000)。每个交汇点都是至少两条跑道的端点。奶牛们知道每条跑道的长度lengthi(1 <= lengthi <= 1,000),以及每条跑道连结的交汇点的编号。并且,没有哪两个交汇点由两条不同的跑道直接相连。你可以认为这些交汇点和跑道构成了一张图。
为了完成一场接力跑,所有N 头奶牛在跑步开始之前都要站在某个交汇点上(有些交汇点上可能站着不只1头奶牛)。当然,她们的站位要保证她们能够将接力棒顺次传递,并且最后持棒的奶牛要停在预设的终点。
你的任务是,写一个程序,计算在接力跑的起点(S)和终点(E)确定的情况下,奶牛们跑步路径可能的最小总长度。显然,这条路径必须恰好经过N条跑道。

【输入】

第1行: 4个用空格隔开的整数:N,T,S,以及E
第2..T+1行: 第i+1为3个以空格隔开的整数:lengthi,I1i,以及I2i,描述了第i条跑道。

【输出】

1行:输出1个正整数,表示起点为S、终点为E,并且恰好经过N 条跑道的路径的最小长度

【输入样例】

2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9

【输出样例】

10

思路

矩阵乘法DP好难啊!!!

这道题是求最短路而并非方案数。所以这不是普通的矩阵乘法。

我们需要像floyd一样把它合并。

不难发现,floyd矩阵满足结合律。

注意:要离散化。

代码

#include
#include
#include
using namespace std;
const int maxn=1e2+7;
struct M
{
    int v[maxn][maxn];
}a,ass;
int map[maxn],n,m,s,t,e;
M mul(M a,M b)
{
    M c;
    memset(c.v,0x3f,sizeof(c.v));
    for(int i=0; ifor(int j=0; jfor(int k=0; kreturn c;
}
void power(int x)
{
    while(x)
    {
        if(x&1)ass=mul(ass,a);
        a=mul(a,a); 
        x/=2;
    }
}
int main()
{
    scanf("%d%d%d%d",&m,&t,&s,&e);
    memset(a.v,0x3f,sizeof(a.v));
    memset(ass.v,0x3f,sizeof(ass.v));
    for(int i=1; i<=t; i++)
    {
        int l,x,y;
        scanf("%d%d%d",&l,&x,&y);
        if(!map[x]) map[x]=++n;
        if(!map[y]) map[y]=++n;
        a.v[map[x]][map[y]]=l; a.v[map[y]][map[x]]=l;
    }
    for(int i=0; i0;
    power(m);
    printf("%d",ass.v[map[s]][map[e]]);
}

你可能感兴趣的:(题解,Floyd,离散,矩阵乘法)