- 基于图神经网络的动态物化视图管理
KaiwuDB 数据库
人工智能
本期PaperReading主要介绍了发布于2023年ICDE的论文《DynamicMaterializedViewManagementusingGraphNeuralNetwork》,该文研究了动态物化视图管理问题,提出了一个基于GNN的模型。在真实的数据集上的实验结果表明,取得了更高的质量。一、背景物化视图(MaterializedViews,下文简称MVs)在数据库管理系统中起着至关重要的作
- 【PaperReading】3. PTP
页页读
大模型人工智能PTPmodel多模态大模型
CategoryContent论文题目Position-guidedTextPromptforVision-LanguagePre-trainingCode:ptp作者AlexJinpengWang(SeaAILab),PanZhou(SeaAILab),MikeZhengShou(ShowLab,NationalUniversityofSingapore),ShuichengYan(SeaAIL
- 【PaperReading】4. TAP
页页读
大模型人工智能多模态大模型
CategoryContent论文题目TokenizeAnythingviaPrompting作者TingPan,LuluTang,XinlongWang,ShiguangShan(BeijingAcademyofArtificialIntelligence)发表年份2023摘要提出了一个统一的可提示模型,能够同时对任何事物进行分割、识别和描述。与SAM不同,我们的目标是通过视觉提示在野外构建一个
- 【PaperReading】2. MM-VID
页页读
大模型多模态模型MM-vid
CategoryContent论文题目MM-VID:AdvancingVideoUnderstandingwithGPT-4V(ision)作者KevinLin,FaisalAhmed,LinjieLi,Chung-ChingLin,EhsanAzarnasab,ZhengyuanYang,JianfengWang,LinLiang,ZichengLiu,YumaoLu,CeLiu,LijuanW
- ZKP zkDT (PaperReading)
Simba17
PaperReading零知识证明零知识证明笔记论文阅读
zkDT(CCS’20)PaperReadingZhang,Jiaheng,etal.“Zeroknowledgeproofsfordecisiontreepredictionsandaccuracy.”Proceedingsofthe2020ACMSIGSACConferenceonComputerandCommunicationsSecurity.2020.AbstractInthispape
- AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion
努力学图像处理的小菜
Low-level扩散模型人工智能
AutoDIR:AutomaticAll-in-OneImageRestorationwithLatentDiffusion(Paperreading)YitongJiang,TheChineseUniversityofHongKong,arXiv23,Code,Paper1.前言我们提出了一种具有潜在扩散的一体化图像恢复系统,名为AutoDIR,它可以自动检测和恢复具有多种未知退化的图像。我们的
- Image Super-Resolution with Text Prompt Diffusion
努力学图像处理的小菜
Low-level扩散模型prompt计算机视觉人工智能
ImageSuper-ResolutionwithTextPromptDiffusion(Paperreading)ZhengChen,ShanghaiJiaoTongUniversity,arXiv23,Code,Paper1.前言受多模态方法和文本提示图像处理进步的启发,我们将文本提示引入图像SR,以提供退化先验。具体来说,我们首先设计了一个文本图像生成管道,通过文本退化表示和退化模型将文本集
- CONTROLLING VISION-LANGUAGE MODELS FOR MULTI-TASK IMAGE RESTORATION
努力学图像处理的小菜
Low-level图像处理扩散模型语言模型人工智能自然语言处理
CONTROLLINGVISION-LANGUAGEMODELSFORMULTI-TASKIMAGERESTORATION(Paperreading)ZiweiLuo,UppsalaUniversity,ICLRunderreview(6663),Cited:None,Stars:350+,Code,Paper.1.前言像CLIP这样的视觉语言模型已经显示出对零样本或无标签预测的各种下游任务的巨大
- GNN3.1 GCN (PaperReading&Implementation)
Simba14
PaperReading图神经网络笔记人工智能
GNN学习笔记GNN从入门到精通课程笔记3.1GCN(ICLR'17)Semi-supervisedClassificationwithGraphConvolutionalNetwork(ICLR'17)AbstractWepresentascalableapproachforsemi-supervisedlearningongraph-structureddatathatisbasedonane
- RPKI IRR Hygiene in the RPKI Era (Paper Reading)
Simba14
计算机网络PaperReadingRPKI计算机网络笔记
RPKI-IRRHygieneintheRPKIEra(PaperReading)Noteofpaper“IRRHygieneintheRPKIEra”(PAM'22)IntroductionIRR&RPKIImproveroutingsecurityintheBorderGatewayProtocol(BGP)byallowingnetworkstoregisterinformationandd
- ResShift: Efficient Diffusion Model for Image Super-resolution by Residual Shifting
努力学图像处理的小菜
计算机视觉人工智能深度学习
ResShift:EfficientDiffusionModelforImageSuper-resolutionbyResidualShifting(Paperreading)ZongshengYue,S-Lab,NanyangTechnologicalUniversity,NeurIPS23,Cited:0,Code,Paper1.前言基于扩散的图像超分辨率(SR)方法由于需要数百甚至数千个采样
- Diffusion Autoencoders: Toward a Meaningful and Decodable Representation
努力学图像处理的小菜
扩散模型Tricks图像处理人工智能深度学习计算机视觉
DiffusionAutoencoders:TowardaMeaningfulandDecodableRepresentation(Paperreading)KonpatPreechakul,VISTEC,Thailand,CVPR22Oral,Cited:117,Code,Paper1.前言扩散概率模型(DPM)在图像生成方面取得了显着的质量,可与GAN相媲美。但是与GAN不同,DPM使用一组潜
- Denoising Diffusion Autoencoders are Unified Self-supervised Learners
努力学图像处理的小菜
计算机视觉深度学习
DenoisingDiffusionAutoencodersareUnifiedSelf-supervisedLearners(Paperreading)WeilaiXiang,BeihangUniversity,arXiv23,Code,Paper1.前言受最近扩散模型进展的启发,这让人想起去噪自编码器,我们研究了它们是否可以通过生成预训练获得分类的判别表示。本文表明扩散模型中的网络,即去噪扩散
- Learning Invariant Representation for Unsupervised Image Restoration
努力学图像处理的小菜
图像处理Low-level人工智能计算机视觉深度学习
LearningInvariantRepresentationforUnsupervisedImageRestoration(Paperreading)WenchaoDu,SichuanUniversity,CVPR20,Cited:63,Code,Paper1.前言近年来,跨域传输被应用于无监督图像恢复任务中。但是,直接应用已有的框架,由于缺乏有效的监督,会导致翻译图像出现域漂移问题。相反,我们
- 重读GPDB 和 TiDB 论文引发的 HTAP 数据库再思考
阿福Chris
Greenplum使用TiDB数据库GreenplumTiDB
为什么要再思考?大家好,我是阿福,之前我在社区PaperReading活动中分享了Greenplum团队在2021年SIGMOD上发表的论文:《Greenplum:AHybridDatabaseforTransactionalandAnalyticalWorkloads》。该篇论文,针对传统分析型数据库产品(OLAPRDBMS)Greenplum,通过解决一系列TP场景下的高代价计算问题,比如“分
- TiDB 论文引发的 HTAP 数据库再思考
TiDB 社区干货传送门
tidb数据库
作者:阿福Chris原文来源:https://tidb.net/blog/edacd590为什么要再思考?大家好,我是阿福,之前我在社区PaperReading活动中分享了Greenplum团队在2021年SIGMOD上发表的论文:《Greenplum:AHybridDatabaseforTransactionalandAnalyticalWorkloads》-https://asktug.com
- 一文详解数据库 MVCC
zhisheng_blog
数据库javamysqlxhtmlwebgl
点击上方"zhisheng"关注,星标或置顶一起成长Flink从入门到精通系列文章很多开发者都熟悉InnoDB中的MVCC(Multi-VersionConcurrencyControl)。在应用层面,通过维护多版本的数据,可以提高并行事务数,且不影响各事务的可串行性。本次PaperReading的论文出自2017年VLDB:《AnEmpiricalEvaluationofIn-MemoryMul
- Paper Reading【1】:Widar2.0: Passive Human Tracking with a Single Wi-Fi Link
Genuine:)
matlab算法信息与通信信号处理
PaperReading【1】:Widar2.0:PassiveHumanTrackingwithaSingleWi-FiLink前言Abstract1INTRODUCTION2OVERVIEW3MOTIONINCSI3.1CSI-MotionModel3.2JointMultipleParameterEstimation3.3CSICleaning4LOCALIZATION4.1PathMatc
- Paperreading:ChatGPT is not all you need. A State of the Art Review of large Generative AI models
阿花小朋友
生成ai人工智能python深度学习自然语言处理
ChatGPTisnotallyouneed.AStateoftheArtReviewoflargeGenerativeAImodels最先进的大型AI生成模型综述原文链接Abstract在过去两年中,已经发布了大量大型生成模型,例如ChatGPT或StableDiffusion。具体而言,这些模型能够执行诸如通用问答系统或自动创建艺术图像等任务,这些任务正在彻底改变多个领域。因此,这些生成模型对
- 本地部署体验LISA模型(LISA≈图像分割基础模型SAM+多模态大语言模型LLaVA)
热水过敏
项目记录python计算机视觉图像处理交互pytorch自然语言处理
GitHub地址:https://github.com/dvlab-research/LISA该项目论文paperreading:https://blog.csdn.net/Transfattyacids/article/details/132254770在GitHub上下载源文件,进入下载的文件夹,打开该地址下的命令控制台,执行指令:pipinstall-rrequirements.txtpip
- Tiny-Attention Adapter: Contexts Are More Important Than the Number of Parameters
努力学图像处理的小菜
Tricks深度学习
Tiny-AttentionAdapter:ContextsAreMoreImportantThantheNumberofParameters(Paperreading)HongyuZhao,UniversityofChicago,EMNLP2022,Cited:3,Code:None,Paper1.前言Adapter-tuning是一种范式,通过添加和调整少量新参数,将预训练语言模型转移到下游任
- Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification
努力学图像处理的小菜
Tricks人工智能计算机视觉深度学习
Tip-Adapter:Training-freeAdaptionofCLIPforFew-shotClassification(Paperreading)RenruiZhang,ShanghaiAILaboratory,ECCV2022,Cited:45,Code,Paper1.前言对比式视觉-语言预训练,也称为CLIP,通过大规模的图像-文本对来学习视觉表示,为zero-shot知识迁移展示了
- [GAN] 使用GAN网络进行图片生成的“调参人”入门指南——生成向日葵图片
驼同学.
生成式网络生成对抗网络神经网络人工智能mindspore
[GAN]使用GAN网络进行图片生成的“炼丹人”日志——生成向日葵图片文章目录[GAN]使用GAN网络进行图片生成的“炼丹人”日志——生成向日葵图片1.写在前面:1.1应用场景:1.2数据集情况:1.3实验原理讲解和分析(简化版,到时候可以出一期深入的PaperReading)1.4一些必要的介绍2.重要实验代码:2.1一些相关的数据预处理2.2生成器和判别器2.3损失函数计算2.4训练和反向传播
- 今晚 7 点半 | SUFS: 存储资源使用量预测服务
KaiwuDB
KaiwuDB
线上沙龙-PaperReading第6期营业啦本期直播看点本期论文>>《SUFS:AGenericStorageUsageForecastingServiceThroughAdaptiveEnsembleLearning》论文提出了一个增强的LSTM神经网络和自适应的模型集成算法,为不同的存储系统提供统的存储资源使用量预测服务,该方法的准确率在多个真实生产环境的存储系统中得到了验证。为什么选择本期
- SUFS: 存储资源使用量预测服务
KaiwuDB
KaiwuDB
线上沙龙-PaperReading第6期营业啦06月27日(周二)19:30KaiwuDB-B站直播间本期论文>>《SUFS:AGenericStorageUsageForecastingServiceThroughAdaptiveEnsembleLearning》论文提出了一个增强的LSTM神经网络和自适应的模型集成算法,为不同的存储系统提供统一的存储资源使用量预测服务,该方法的准确率在多个真实
- LayoutTransformer: Layout Generation and Completion with Self-attention
努力学图像处理的小菜
机器学习人工智能深度学习
LayoutTransformer:LayoutGenerationandCompletionwithSelf-attention(Paperreading)KamalGupta,UniversityofMaryland,US,Cited:41,Code,Paper1.前言我们解决了在各种领域中(如图像、移动应用、文档和3D对象)进行场景布局生成的问题。大多数复杂场景,无论是自然场景还是人工设计的
- TextDiffuser: Diffusion Models as Text Painters
努力学图像处理的小菜
扩散模型图像处理人工智能深度学习计算机视觉
TextDiffuser:DiffusionModelsasTextPainters(Paperreading)JingyeChen,HKUST,HK,arXiv2023,Cited:0,Code,Paper1.前言扩散模型因其出色的生成能力而受到越来越多的关注,但目前在生成准确连贯的文本方面仍存在困难。为了解决这个问题,我们引入了TextDiffuser,重点是生成具有视觉吸引力的文本,并且与背
- Guided Diffusion/Diffusion Models Beat GANs on Image Synthesis (Paper reading)
努力学图像处理的小菜
图像处理扩散模型pythonpython算法人工智能计算机视觉深度学习
GuidedDiffusion/DiffusionModelsBeatGANsonImageSynthesis(Paperreading)PrafullaDhariwal,OpenAI,NeurlPS2021,Cited:555,Code,Paper.目录子GuidedDiffusion/DiffusionModelsBeatGANsonImageSynthesis(Paperreading)1.
- An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion
努力学图像处理的小菜
图像处理扩散模型Tricks计算机视觉人工智能深度学习
AnImageisWorthOneWord:PersonalizingText-to-ImageGenerationusingTextualInversion(Paperreading)RinonGal,Tel-AvivUniversity,Israel,arXiv2022,Cited:182,Paper,Code1.前言文本到图像的模型为通过自然语言引导创作提供了前所未有的自由。然而,目前尚不清
- GlyphControl: Glyph Conditional Control for Visual Text Generation
努力学图像处理的小菜
扩散模型计算机视觉人工智能深度学习
GlyphControl:GlyphConditionalControlforVisualTextGeneration(Paperreading)YukangYang,MicrosoftResearchAsia,arXiv2023,Cited:0,Code,Paper1.前言最近,人们对开发基于扩散的文本到图像生成模型的兴趣日益增长,这些模型能够生成连贯且形式良好的视觉文本。在本文中,我们提出了一
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http