- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 2.18学习总结
啊这泪目了
学习数据结构
链式前向星的处理和建立tarjan对割点和缩点的使用拓扑排序链式前向星:预处理:structedge{intfrom;intto;intnext;}e[N];intn,m,head[N],dfn[N],low[N],tot,color[N],num[N],out[N],s,instack[N],id;处理:voidadd(intu,intv){e[++tot].from=u;e[tot].to=v
- 2.17学习总结
啊这泪目了
学习
tarjan【模板】缩点https://www.luogu.com.cn/problem/P3387题目描述给定一个�n个点�m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。输入格式第一行两个正整数�,�n,m第二行�n个整数,其中第�i个数��ai表示点�i的点权。第三至�+2m+2
- HDUOJ 4738 Caocao‘s Bridges 题解 桥 割边 Tarjan
kaiserqzyue
算法题目c++算法图论
题目链接:HDUOJ4738Caocao’sBridges题目描述:给定一个无向图,你可以选择最多删除一条边,删除边的代价是边的边权(特殊地,删除一条边权为0的边的代价是1),问最小代价使得图不连通。如果无论如何图都是连通的,那么则输出-1。题解:题目也就是需要我们求一条桥边,这个桥边所拥有的边权最小。我们只需要求出所有的桥边,然后对边权取一个最小值即可(需要注意边权为0的边我们要将其变成边权为1
- POJ 2117 Electricity 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:POJ2117Electricity题目描述:给定一张无向图,问删除一个结点后最多会有多少个强连通分量。题解:我们用scc表示初始的图中有多少个强连通分量,该值可以通过DFS计算出来。接下来我们只需要计算出删除每个割点会增加的强连通分量个数cnt即可,答案即为cnt+ans,对于一个强连通分量中的非根结点,用son表示有多少个子结点能够返回到当前结点或者当前结点之前遍历的结点,那么不难发
- POJ 1523 SPF题解 Tarjan 割点
kaiserqzyue
算法题目c++算法图论
题目链接:POJ1523SPF题目描述:给定一张连通的无向图,问哪些结点是割点,分别删除各个割点时会产生几个强连通分量。题解:求割点可以通过Tarjan算法来解决,我们接下来考虑删除一个割点后会产生多少个联通块。在Tarjan算法中,我们判断一个点是否是割点是通过其子结点能否回到遍历过的结点来判断。如果当前遍历的结点存在一个子结点不能够回到已经遍历过的结点,那么当前遍历的结点便是一个割点(这样的依
- Luogu P5058 [ZJOI2004] 嗅探器 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:LuoguP5058[ZJOI2004]嗅探器题目描述:给定一张无向图,以及两个点s,t,你需要找到一个点(这个点不能是s或t),这个点被所有s,t之间的路径所经过。如果不存在这样的点,输出Nosolution。如果有多个这样的点,输出编号最小的。题解:我们很容易发现要删除的点一定是割点(按照题意,删除后,s与t不能进行通信,这说明强连通分量增加了)。我们只需要考虑哪些割点是满足条件的。
- 支配树与Lengauer-Tarjan算法
罗博士
ACM数据结构算法支配树
支配树与Lengauer-Tarjan算法支配点dfs序与半支配点确定支配点算法与代码支配点在一个有向图中,确定SSS作为起点。对某个点xxx而言,如果点yyy是xxx的支配点,则从SSS到xxx的任意路径均必须经过yyy。显然支配点可能不止一个。但如果将xxx的最近支配点到xxx连一条边,则会形成一个树形结构,称之为支配树。假设有图digraphdemo{1->{2}2->{3}3->{4,5,
- 第四章 图论(4):SPFA求负环、差分约束、LCA
路哞哞
算法笔记图论算法LCA
目录一、SPFA求负环1.0SPFA判断负环1.1虫洞1.2观光奶牛(spfa&&01分数规划)1.3单词环二、差分约束2.1糖果2.2区间2.3排队布局2.4雇佣收银员2.5再卖菜三、最近公共祖先(LCA)3.1祖孙询问(倍增法)3.2距离(Tarjan算法)3.3次小生成树3.4暗之连锁一、SPFA求负环一般会和01分数规划结合负环:一个环且环上所有权值之和小于零负环对最短路径的影响:如果在求
- 负环与差分约束
「已注销」
ACM--图论
文章目录负环与差分约束1.基本概念、方法1.1负环1.1.1spfa判负环/正环1.1.2tarjan+缩点判断正环/负环1.1.3拓扑排序判断正环/负环1.2差分约束2.例题2.1负环/正环判定2.1.1spfa判断负环/正环2.1.2tarjan求scc+缩点判断正环/负环2.1.3拓扑排序判断正环/负环2.2差分约束2.2.1spfa差分约束2.2.2tarjan求scc+缩点+dp差分约束
- 1171. 距离(离线求LCA:tarjan算法)
Landing_on_Mars
#最近公共祖先算法数据结构图论
1171.距离-AcWing题库给出n个点的一棵树,多次询问两点之间的最短距离。注意:边是无向的。所有节点的编号是1,2,…,n1。输入格式第一行为两个整数n和m。n表示点数,m表示询问次数;下来n−1行,每行三个整数x,y,k,表示点x和点y之间存在一条边长度为k;再接下来m行,每行两个整数x,y,表示询问点x到点y的最短距离。树中结点编号从1到n。输出格式共m行,对于每次询问,输出一行询问结果
- Tarjan 算法思想求强连通分量及求割点模板(超详细图解)
harry1213812138
图论算法算法tarjan强连通分量割点割边
割点定义在一个无向图中,如果有一个顶点,删除这个顶点及其相关联的边后,图的连通分量增多,就称该点是割点,该点构成的集合就是割点集合。简单来说就是去掉该点后其所在的连通图不再连通,则该点称为割点。若去掉某条边后,该图不再连通,则该边称为桥或割边。若在图G中(如下图),删除uv这条边后,图的连通分量增多,则u和v点称为割点,uv这条边称为桥或割边。显然,有割点的图不是哈密尔顿图。Tarjan算法求强连
- 《算法竞赛进阶指南》tarjan做法 银河
啥也不会hh
算法竞赛进阶指南图论算法竞赛进阶指南算法提高课二刷算法c++最短路图论tarjan
银河中的恒星浩如烟海,但是我们只关注那些最亮的恒星。我们用一个正整数来表示恒星的亮度,数值越大则恒星就越亮,恒星的亮度最暗是1。现在对于N颗我们关注的恒星,有M对亮度之间的相对关系已经判明。你的任务就是求出这N颗恒星的亮度值总和至少有多大。输入格式第一行给出两个整数N和M。之后M行,每行三个整数T,A,B,表示一对恒星(A,B)之间的亮度关系。恒星的编号从1开始。如果T=1,说明A和B亮度相等。如
- Tarjan 算法及其应用
Kwjdefulgn
图论基础
Tarjan算法及其应用NO.1求强连通分量学习链接:https://www.cnblogs.com/shadowland/p/5872257.html学习心得:dfn[cur]记录访问cur结点的时间戳,low[cur]记录cur结点及其子树中时间戳最小是多少,严格意义上来讲low[cur],记录的是在不回头遍历父节点的前提下第一次能访问到的最早的已遍历结点的时间戳。显然当访问cur结点的子节点
- Tarjan算法
mrcrack
codeforces
Tarjan算法此文https://www.luogu.com.cn/blog/styx-ferryman/chu-tan-tarjan-suan-fa-qiu-qiang-lian-tong-fen-liang-post介绍不错,摘抄如下“tarjan陪伴强联通分量生成树完成后思路才闪光欧拉跑过的七桥古塘让你心驰神往”----《膜你抄》tarjan是一种求强连通分量、双连通分量的常用算法,其拓展
- Tarjan算法超超超详解(ACM/OI)(强连通分量/缩点)(图论)(C++)
seh_sjlj
OIC/C++算法
本文将持续更新。I前置芝士:深度优先搜索与边的分类首先我们来写一段基本的DFS算法(采用链式前向星存图):boolvis[MAXN];voiddfs(intu){vis[u]=true;for(inte=first[u];e;e=nxt[e]){//遍历连接u的每条边intv=go[e];if(!vis[v])dfs(v);//如果没有访问过就往下继续搜}}这段代码我们再熟悉不过了。接下来我们要引
- Tarjan算法与连通性
流苏贺风
图论算法算法dfs强联通图论
Tarjan算法Tarjan与有向图一、强连通定义二、Tarjan算法求强连通分量2.tarjan的构成要素3.算法的分析4.算法的实现11,未被访问:22,被访问过,已经在栈中:5.算法的代码实物三,缩点四,实际应用Tarjan和无向图一,定义和性质二,割边(桥)和E-DCC11,模板22,实际应用三,割点11,概况22,实现四,V-DCC(点双联通分量)1,求v-dcc2,v-dcc特异性缩点
- 超级详细的Tarjan算法
ivysister
acm题tarjan最大连通分量
有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(stronglyconnectedcomponents)。下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
- Tarjan 算法超级详解
键盘上的艺术家w
#算法-图论Tarjan算法超级详解
首先我们引入定义:1、有向图G中,以顶点v为起点的弧的数目称为v的出度,记做deg+(v);以顶点v为终点的弧的数目称为v的入度,记做deg-(v)。2、如果在有向图G中,有一条有向道路,则v称为u可达的,或者说,从u可达v。3、如果有向图G的任意两个顶点都互相可达,则称图G是强连通图,如果有向图G存在两顶点u和v使得u不能到v,或者v不能到u,则称图G是强非连通图。4、如果有向图G不是强连通图,
- C++算法篇:DFS超详细解析(2)--- tarjan算法求无向图割边
Xunlan_
C++算法篇c++算法开发语言dfs
v边)low[v]dep[u]low[v]>dep[u]low[v]>dep[u]:意味着v只能回到u以下,此时若拿掉u-v,u、v间回断开,故是桥。(很久以前的笔记)至此,我们已经明确割边的判断,最后一件事便是求low值了:未访问过的点(树边):那么这是原节点的子孙,只需在dfs改点后将二者low取min(因为存在下方没有树边的情况此时不需更新low)已访问的点(回边):(边u->v)取low[
- 图论 强(双)连通分量tarjan算法
Little_Match_Boy
ACM图论图论算法c++
强(双)连通分量tarjan算法这里挂两个题,第一个题求强联通分量,第二个题求割点先说一下tarjan的读法:taran(taren)(j不发音)hdu5934(tarjan算法+缩点)bombThereareNbombsneedingexploding.Eachbombhasthreeattributes:explodingradiusri,position(xi,yi)andlighting-
- Tarjan 算法(超详细!!)
一棵油菜花
算法篇算法深度优先图论c++笔记
推荐在cnblogs上阅读Tarjan算法前言说来惭愧,这个模板仅是绿的算法至今我才学会。我还记得去年CSP2023坐大巴路上拿着书背Tarjan的模板。虽然那年没有考连通分量类似的题目。现在做题遇到了Tarjan,那么,重学,开写!另,要想学好此算法的第一件事——膜拜Tarjan爷爷。Tarjan算法到底是什么其实广义上有许多算法都是Tarjan发明的(大名鼎鼎的Link-Cut-Tree正是出
- Lowest Common Ancestor
lyh20021209
数据结构与算法算法leetcode数据结构java并查集
模板1.Tarjan一个讲的很好的视频:D10Tarjan算法P3379【模板】最近公共祖先(LCA)_哔哩哔哩_bilibili,董晓算法出品。Tarjan总体来说可以概括为:记录访达:记录某个节点是否已经访问过,防环向下深搜:深搜子节点回溯指父:低层回溯时将子节点归于当前父节点所在等价类中离时查询:本层向上回溯时查询与当前节点所有相关的LCA,记录答案packageTarjan.LCA;imp
- 20 求图的割点和割边—Tarjan算法
xuqw11111
01算法初步—啊哈算法图论算法数据结构c++
1图的割点问题描述去掉2号城市,这样剩下的城市之间就不能两两相互到达。例如4号城市不能到5号城市,6号城市也不能到达1号城市等等。下面将问题抽象化。在一个无向连通图中,如果删除某个顶点后,图不再连通(即任意两点之间不能相互到达),我们称这样的顶点为割点(或者称割顶)。那么割点如何求呢?解决思路很容易想到的方法是:依次删除每一个顶点,然后用深度优先搜索或者广度优先搜索来检查图是否依然连通。如果删除某
- 【分离的路径 USACO 2006】(DCC | 边双连通分量 | 悬挂点 | 表思想 | 重边special judge | tarjan alg.)
XNB's Not a Beginner
数据结构算法c++图搜索图论
jumper题目大意:有n个旅游景点r条路线,每条路线双向链接两个景区由于每条线路都有可能被施工,并且保证每次施工只对一条线路进行。问至少需要添加几条边,能保证不论那条边在修建时,城市始终还是连通的/**分离的路径USACO2006jan.Gold/roadconstructionPOJ3352*/#include#include#include#include#include#define_uf
- 【Network POJ-3417】 (DFS | TARJAN| LCA | 树上差分)
XNB's Not a Beginner
深度优先算法
传送门题目大意:给定无根树,N个节点,N-1条树边,和M条“附加边”;删除一条树边和一条附加边使图不再连通,求总方案数;/**NetworkPOJ3417*/#include#include#includeconstexprintNN{(int)(1e5)+1},MM{(int)(1e5)0;add(u,v),add(v,u))scanf("%d%d",&u,&v);(void)tarjan(1,
- 【LeetCode题目拓展】第207题 课程表 拓展(拓扑排序、Tarjan算法、Kosaraju算法)
北顾.岛城
面试算法leetcode算法leetcode职场和发展学习深度优先面试
文章目录一、拓扑排序题目二、题目拓展1.思路分析2.tarjan算法3.kosaraju算法一、拓扑排序题目最近在看一个算法课程的时候看到了一个比较好玩的题目的扩展,它的原题如下:对应的LeetCode题目为207.课程表这个题目本身来说比较简单,就是一道标准的拓扑排序题目,解法代码如下:importjava.util.ArrayList;importjava.util.LinkedList;im
- B3610 [图论与代数结构 801] 无向图的块 题解
luogu_scp020
题解c++算法
B3610[图论与代数结构801]无向图的块题解202320232023,再见。202420242024,你好!解法其实就是统计点双连通分量的个数。需要注意的是,孤立点在这里不被看作块。本文使用tarjan算法来解决这道题。概念明晰时间戳:这里记为dfnidfn_idfni,表示第一次深度优先搜索到节点iii的时间。时间time∈N+time\in\mathbb{N}^+time∈N+且随这搜索依
- 刺猬的玻璃心博客目录:
weixin_30463341
开发工具数据结构与算法
第一篇:入坑第一篇目录:常用技术类:1,poj题库题目分类:poj题库分类2,vim命令大全:vim命令大全(转)3,noip提高组必须掌握内容(转载)1,图论:1,spfa:1,裸裸的spfa~嘿嘿嘿!2,spfa-codevs1021题解3,BZOJ1003物流运输最短路+DP//spfa+DP2,拓扑排序1,拓扑排序2,拓扑排序1.奖金3,tarjan1,全网最!详!细!tarjan算法讲解
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟