- 计算机视觉算法实战——病变检测:从原理到应用
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能目标检测
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.计算机视觉在病变检测领域的概述计算机视觉在医疗影像分析中的应用已经成为人工智能最具前景的领域之一。病变检测作为其中的核心任务,旨在自动识别和定位医学图像中的异常区域,为医生提供辅助诊断工具。这一技术可以显著提高诊断效率,减少人为误差,并在早期疾病筛查中发挥关键作用。医学病变检测与常
- 【ComfyUI专栏】实现基于SDXL的精细化成图效果
雾岛心情
ComfyUI人工智能AIGCComfyUI
当ComfyUI的生成模型升级至SDXL版本后,图像生成流程被划分为两个阶段:首先由基础的SDXL模型生成初始图像,随后通过Refiner模型对图像细节进行优化。从这一流程中可以看出,我们目前采用了基础加载器(BaseLoader)和优化加载器(RefinerLoader)的双重架构。通常情况下,我们首先通过基础模型(BaseModel)进行初步的模型加载与图像生成,随后利用优化模型(Refine
- 深度学习模型的压缩与轻量化技术
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
深度学习,模型压缩,轻量化,效率,可部署性,精度1.背景介绍深度学习在图像识别、自然语言处理、语音识别等领域取得了突破性的进展,但其模型规模庞大,计算资源需求高,部署成本高昂,这限制了其在移动设备、嵌入式系统等资源受限环境中的应用。因此,深度学习模型的压缩与轻量化技术成为一个重要的研究方向。模型压缩是指通过减少模型参数数量、减少模型层数或减少模型计算量来减小模型规模,从而降低模型存储和计算成本。轻
- 【taiwindcss4系列教程】tailwindcss失效不显示的简单处理方法
马墉 HW
css前端
目录起因问题解决思路起因新版本的tailwindcss4在ios设备上或iphone8splus等设备上部分失效或全部无效。如何解决呢,本教程传授一种简单方法且有效的方法。问题比如下面的代码,边框样式在某些手机上边框无法显示无法显示。边框样式失效解决思路我们可以在tailwindcss官网找到borderwidth说明文档。将Properties代码进行复制,并写入到style的行内样式。这样ta
- 神秘的图像进化:单GPU扩散蒸馏中的相对与绝对位置匹配之谜
步子哥
计算机视觉人工智能
在人们对图像生成和创作的无尽追求中,扩散模型就像一种魔法,将最初一团朦胧的高斯噪声慢慢“绘制”出精致的图像。近期,一篇题为“HighQualityDiffusionDistillationonaSingleGPUwithRelativeandAbsolutePositionMatching”的论文,为我们展示了一种在单个GPU上也能完成高质量扩散蒸馏的惊艳方法——RAPM。它利用相对与绝对位置匹配
- python 网格_python 栅格处理利器之Rasterio
weixin_40003512
python网格
本文主要是Automatizedatadownloadautomating-gis-processes.github.io中栅格图像处理的学习笔记,分享给大家,同时也便于自己记忆以及查看,节省时间。数据准备如果手头有数据,可以跳过该步骤,如果没有,可以按照原文提供的下载链接,保存数据。importosimporturllibdefget_filename(url):"""Parsesfilenam
- 临床报告深度学习总结
Trank-Lw
深度学习人工智能
你对深度学习模型训练有哪些优化策略?在深度学习模型训练中,优化策略是提升模型性能和效率的关键。以下是一些常见的优化策略:1.数据优化数据预处理:对数据进行清洗、归一化、标准化等操作,以减少噪声并提高模型的收敛速度。数据增强:通过旋转、裁剪、翻转等方式增加数据多样性,尤其在图像处理中效果显著。数据采样:采用过采样或欠采样技术解决数据不平衡问题。2.模型优化模型架构选择:根据任务需求选择合适的模型架构
- 图像多分类的人工智能
love_c++
人工智能分类数据挖掘
当涉及到图像多分类任务,通常会使用深度学习模型,如卷积神经网络(ConvolutionalNeuralNetwork,CNN)。以下是一个使用Python编程语言和TensorFlow库来构建一个简单的图像多分类模型的例子:#导入所需的库importtensorflowastffromtensorflow.kerasimportlayers,models,datasetsimportmatplot
- 关于网站截图功能的几种方案
墨雪遗痕
JavaScriptvuejavascript前端
HTML2canvas该脚本通过读取DOM以及应用于元素的不同样式,将当前页面呈现为canvas图像。它不需要来自服务器的任何渲染,因为整个图像是在客户端上创建的。但是,由于它太依赖于浏览器,因此该库不适合在nodejs中使用。它也不会神奇地规避任何浏览器内容策略限制,因此呈现跨域内容将需要代理来将内容提供给相同的源。该脚本仍然处理非常实验状态,因此不建议在生产环境中使用它,也不建议使用它来构建应
- Stable Diffusion进行图像生成
月月猿java
人工智能
使用StableDiffusion进行图像生成通常涉及以下步骤:安装依赖库:首先,你需要安装必要的Python库,如PyTorch、torchvision、diffusers和transformers等。这些库将为你提供深度学习框架、图像处理工具和StableDiffusion模型的接口。获取预训练模型:StableDiffusion模型通常很大,因此你需要从可靠的来源下载预训练模型。Huggin
- 【ICLR 2023】Diffusion Models扩散模型和Prompt Learning提示学习:prompt-to-prompt
沉迷单车的追风少年
DiffusionModels与深度学习扩散模型diffusionmodelpromptlearning提示学习
DiffusionModels专栏文章汇总:入门与实战前言:今年promptlearning提示学习和diffusionmodels扩散模型实在是太火了,最新的ICLR2023的一项工作把两者结合了起来,取得了十分惊艳的效果!正好昨天代码刚刚开源,这篇博客就和大家一起解读一下原理与代码!目录贡献概述图像编辑技术为什么是困难的?真正的text-to-image编辑论文和代码天选之子:cross-at
- matlab纹理特征提取方法,基于共生矩阵纹理特征提取
weixin_39664477
matlab纹理特征提取方法
提取纹理图像的灰度共生矩阵,.对共生矩阵计算能量、熵、惯性矩、相关4个纹理参数,提取纹理图像的特征量.%基于共生矩阵纹理特征提取,d=1,θ=0°,45°,90°,135°共四个矩阵%所用图像灰度级均为256%function:T=Texture(Image)%Image:输入图像数据%T:返回八维纹理特征行向量灰度直方图是对图像上单个象素具有某个灰度进行统计的结果,而灰度共生矩阵是对图像上保持某
- 基于动态光影融合的缺陷实时检测和材质量化方法,并且整合EventPS、VMNer和EvDiG
神经网络15044
算法python材质
要完成基于动态光影融合的缺陷实时检测和材质量化方法,并且整合EventPS、VMNer和EvDiG,是一个复杂且综合性的任务。以下是一个大致的实现步骤和代码示例,不过要完整完成论文和所有实验还需要大量的细化和调整。整体思路数据加载与预处理:加载图像数据,进行必要的预处理,如归一化、裁剪等。模型整合:将EventPS、VMNer和EvDiG模型整合到一个统一的框架中。动态光影融合:实现动态光影融合算
- 主流大模型架构
Jeremg
架构
什么是大模型架构大模型架构是指用于构建大规模人工智能模型的特定结构和设计模式,旨在处理海量数据、学习复杂的模式和关系,并实现强大的语言理解、生成、图像识别、语音处理等多种智能任务。以下是一些常见的大模型架构的特点、组成和应用:特点大规模参数:包含大量的参数,通常数以亿计甚至更多,以学习丰富的知识和模式,例如GPT-3拥有1750亿个参数。强大的表示能力:能够对各种类型的数据进行高效的表示和处理,捕
- 《Python实战进阶》No34:卷积神经网络(CNN)图像分类实战
带娃的IT创业者
Python实战进阶pythoncnn分类
第34集:卷积神经网络(CNN)图像分类实战摘要卷积神经网络(CNN)是计算机视觉领域的核心技术,特别擅长处理图像分类任务。本集将深入讲解CNN的核心组件(卷积层、池化层、全连接层),并演示如何使用PyTorch构建一个完整的CNN模型,在CIFAR-10数据集上实现图像分类。我们还将探讨数据增强和正则化技术(如Dropout和BatchNorm)对模型性能的影响。核心概念和知识点1.CNN的核心
- 【人工智能】图文详解深度学习中的卷积神经网络(CNN)
AI天才研究院
深度学习实战DeepSeekR1&大数据AI人工智能大模型深度学习人工智能cnn神经网络计算机视觉
【人工智能】图文详解深度学习中的卷积神经网络(CNN)概念和原理为什么要使用卷积神经网络?卷积神经网络简介卷积神经网络的数学公式池化操作:全连接层:激活函数卷积神经网络的C++实现示例代码应用场景自动驾驶影像物体识别医疗影像诊断附:计算机视觉中几种经典的网络结构概念和原理为什么要使用卷积神经网络?在讲述原理之前,我们先来解释为什么我们在图像及视频等等领域的机器学习中要使用CNN。我们都知道,使用多
- OpenAI、谷歌、DeepSeek 同日发布新成果!技术较量,实力如何?
算力云
人工智能行业资讯算力租赁人工智能AIGCLLM大模型GPU算力
3月25日,AI领域迎来密集更新。前脚谷歌上线了最强大的推理模型Gemini2.5Pro,后脚OpenAI发布了GPT-4o图像生成功能,而中国的深度求索团队也在官网宣布DeepSeek-V3完成小版本的更新,版本号为DeepSeek-V30324。三大AI巨头同日交锋,各展身手,揭开2025年AI领域的第一轮混战?让我们一起来看看这些新版本、新功能有何亮点吧!谷歌上线最智能的AI模型Gemini
- Milvus 在多模态数据(图像、文本、音频)向量搜索中的应用
莫比乌斯之梦
技术#Milvusmilvus音视频数据库向量数据库多模态数据
随着人工智能和深度学习的发展,多模态数据检索逐渐成为热门技术,广泛应用于图像搜索、语音识别、跨模态检索、推荐系统等领域。传统的基于关键词或规则的检索方式已经难以满足智能应用的需求,因此,基于向量搜索的近似最近邻(ANN)检索成为主流方案。Milvus作为一款开源的向量数据库,可以高效地存储和检索图像、文本、音频等多模态数据的向量表示。本文将介绍Milvus如何处理多模态数据的向量搜索,以及如何构建
- Photoshop怎样保存为ico格式
小魚資源大雜燴
windows
1.打开图像开启Photoshop软件,选择“文件”菜单,点击“打开”选项,然后找到你想要保存为ICO格式的图像文件并打开。2.调整图像大小(可选)ICO图标通常有特定尺寸要求,你可以根据需求调整图像大小。选择“图像”菜单,点击“图像大小”,在弹出窗口里修改宽度和高度,完成后点击“确定”。3.保存为ICO格式选择“文件”菜单,点击“存储为”。在“存储为”对话框中,从“格式”下拉菜单里选择“Wind
- 【pytorch】图像数据预处理
子根
笔记pytorchpython深度学习
本文是记录一些在深度学习中的预处理的一些语法和函数torchvision.transforms的图像变换[PyTorch学习笔记]2.3二十二种transforms图片数据预处理方法-知乎TORCHVISION.TRANSFORMS的图像预处理_阿巫兮兮的博客-CSDN博客PyTorch09:transforms图像变换、方法操作及自定义方法-YEY的博客|YEYBlog2D、3D中心裁剪:imp
- 使用Python和PyTorch实现了一个简单的生成对抗网络(GAN)用于生成应力值图像
神经网络15044
算法python神经网络pythonpytorch生成对抗网络
以下是一个使用Python和PyTorch实现了一个简单的生成对抗网络(GAN)用于生成应力值图像,并添加了显示正确颜色条的功能。importtorchimporttorch.nnasnnimporttorch.optimasoptimimportmatplotlib.pyplotaspltimportnumpyasnpfromtorchvision.utilsimportmake_gridimp
- Python如何调用pygame库来启动摄像头捕获图像并显示
openwin_top
python编程示例系列二pygamepython开发语言
"""进行基本的图像捕获和显示键盘控制------------------0,启动摄像头0。-1,启动摄像头1。-9,启动摄像头9。-10,等等,没有10号键啊!"""importpygameimportpygame.cameraclassVideoCapturePlayer:size=(640,480)
- 加载各类样本数据集
用大白话学习人工智能
python开发语言
#在sklearn中,一些常用的数据集,以及调用他的方法load_boston:包含503个波士顿房价的观察值,用于研究回归算法的优质数据集load_iris:包含150个鸢尾花尺寸的观察值,用于研究分类算法的优质数据集load_digits:包含1797个手写数字图片的观察值,用于研究图像分类算法的优质数据集1.加载csv文件#加载csv文件importpandasaspd#创建URLurl='
- 基于EasyOCR实现的中文、英文图像文本识别
听风吹等浪起
深度学习之应用篇深度学习人工智能
1.EasyOCREasyOCR是一个基于Python的OCR(光学字符识别)库,用于从图像中提取文本。它简单易用,支持多种语言,并且能够处理各种复杂背景下的文本识别。pipinstalleasyocr主要特点:多语言支持:支持80+种语言的识别,包括中文、英文、日文、韩文等简单易用:几行代码即可实现OCR功能预训练模型:提供开箱即用的预训练模型GPU加速:支持CUDA加速,提高识别速度免费开源:
- [CSS]CSS 尺寸 (Dimension)
海神之光.
csscss前端
CSS尺寸(Dimension)属性允许你控制元素的高度和宽度。同样,它允许你增加行间距。更多实例设置元素的高度这个例子演示了如何设置不同元素的高度。使用百分比设置图像的高度这个例子演示了如何使用百分比值设置元素的高度。使用像素值来设置元素的宽度本例演示如何使用像素值来设置元素的宽度。设置元素的最大高度此示例演示如何设置元素的最大高度。使用百分比来设置元素的最大宽度本例演示如何使用百分比值来设置元
- 基于深度学习的图像识别技术在智能安防中的应用
Blossom.118
分布式系统与高性能计算领域深度学习人工智能主动学习机器学习图像识别自动化人脸识别
一、引言随着科技的飞速发展,人工智能技术逐渐渗透到各个领域,其中深度学习作为人工智能的核心技术之一,在图像识别领域取得了显著的成果。图像识别技术在智能安防领域具有极其重要的应用价值,它能够有效提升安防系统的自动化程度和准确性,为社会的安全稳定提供有力保障。本文将深入探讨基于深度学习的图像识别技术在智能安防中的应用,分析其技术原理、优势以及面临的挑战。二、深度学习与图像识别技术概述(一)深度学习简介
- JavaScript 改变 HTML 图像
我自纵横2023
JaveScript教程javascripthtml开发语言ecmascript前端
JavaScript改变HTML图像JavaScript改变HTML图像的核心是通过动态修改标签的src属性或调整CSS样式实现图像切换或视觉效果变化。以下是具体方法与场景解析:一、核心方法:修改src属性1.直接替换图像路径通过document.getElementById()获取图像元素,修改其src属性即可切换图片:functionchangeImage(){constimg=documen
- AIGC: AI 工具生成高质量图像的速度比最先进的方法更快
北京王老师
人工智能
研究人员将两种流行方法的优点融合在一起,打造出一种图像生成器,其能耗更低,还能在笔记本电脑或智能手机上本地运行。快速生成高质量图像的能力对于创建逼真的模拟环境至关重要,这些环境可用于训练自动驾驶汽车避开不可预测的危险,从而使其在真实街道上更安全。但用于生成此类图像的生成式人工智能技术存在缺陷。一种流行的模型类型,称为扩散模型,能够生成极其逼真的图像,但速度太慢且计算量过大,不适合许多应用。另一方面
- OpenCV图像拼接(3)图像拼接类cv::detail::MultiBandBlender
村北头的码农
OpenCVopencv计算机视觉人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::MultiBandBlender是OpenCV中用于图像拼接(stitching)模块的一个类,主要用于将多张重叠的图像无缝地融合成一张全景图。它实现了多频带融合算法,通过分解图像的频率成分来实现平滑的过渡效果。主要功能与概念多频带融合(M
- 探索HTML5 Canvas:创造动态与交互性网页内容的强大工具
qq39138814
html5前端html
探索HTML5Canvas:创造动态与交互性网页内容的强大工具引言在HTML5的众多新特性中,Canvas无疑是最引人注目的元素之一。它为网页设计师和开发者提供了一个通过JavaScript和HTML直接在网页上绘制图形、图像以及进行动画处理的画布。Canvas的灵活性和强大功能,使得它成为创造动态、交互性网页内容的首选工具。本文将深入探讨HTML5Canvas的基本用法、应用场景以及如何利用它来
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>