SG函数可以说是博弈论中很重要的运用,有了SG函数就可以解决很多很难解决的博弈问题,也是解决例如nim博弈和翻硬币博弈的一些基础。
入门一:
首先来玩个游戏,引用杭电课件上的:
(1) 玩家:2人;
(2) 道具:23张扑克牌;
(3) 规则:
游戏双方轮流取牌;
每人每次仅限于取1张、2张或3张牌;
扑克牌取光,则游戏结束;
最后取牌的一方为胜者。
想一下。。
首先申明一点,博弈的讨论是在大家都玩的最好的情况下讨论的。(如果2个玩家智商有差别,那就没法讨论了~~~~开个玩笑哈。)
介绍概念:P点 即必败点,某玩家位于此点,只要对方无失误,则必败;
N点 即必胜点,某玩家位于此点,只要自己无失误,则必胜。
定理:
一、 所有终结点都是必败点P(上游戏中,轮到谁拿牌,还剩0张牌的时候,此人就输了,因为无牌可取);
二、所有一步能走到必败点P的就是N点;
三、通过一步操作只能到N点的就是P点;
自己画下图看看。
x :0 1 2 3 4 5 6 7 8 9 10。。。
pos:P N N N P N N N P N N 。。。
所以若玩家甲位于N点。只要每次把P点让给对方,则甲必胜;
反之,若玩家甲位于P点,他每次只能走到N点,而只要乙每次把P点让给甲,甲必败;
这里好好理解下;
如果上面的理解的。请解决下面的题目:HDU 1846 2147(注意题目限制内存)(先2道练练手,做不出的话提示:找规律)
接下来介绍Nim游戏(同样引用杭电上的,懒的打字)
1.有两个玩家;
2. 有三堆扑克牌(比如:可以分别是 5,7,9张);
3. 游戏双方轮流操作;
4. 玩家的每次操作是选择其中某一堆牌,然后从中取走任意张;
5.最后一次取牌的一方为获胜方;
想一会:
还记得刚才说的P点和N点吗?P:必败点,N:必胜点
先给出结论,这里要用到位运算,异或:^
游戏的某个位置(x1,x2,x3) x1,x2,x3表示3堆的个数。当且仅当 x1^x2^x3=0时,此点才是必败点P;
结论可以推广到一般情况,即有n堆,(x1,x2,x3,...xn) 当且仅当x1^x2^x3...^xn=0时,此点才是必败点P;
如要看证明过程,链接在此 http://acm.hdu.edu.cn/forum/read.php?fid=9&tid=10617,看不懂的可以问 我(汗。。)
练习:HDU 2188 2149 (做不出的话先看下面的,然后多思考)
下面介绍sg函数(解决博弈问题的王道)
sg 即Graph Game,把博弈游戏抽象成有向无环图
(1) 有向无环图
(2) 玩家1先移动,起点是x0
(3) 两个玩家轮流移动
(4) 对于顶点x, 玩家能够移动到的顶点集记为F(x).
(5) 不能移动的玩家会输掉游戏
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整 数。例如mex{0,1,2,4}=3、 mex{2,3,5}=0、mex{}=0。
定义: 一个图的Sprague-Grundy函数(X,F)是定义在X上的非负函数g(x),并且满足:
g(x) = mex{g(y) : y∈F(x)}
看到这里先好好理解一下sg值是怎么求的;
如果在取子游戏中每次只能取{1,2,3},那么各个数的SG值是多少?
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14. . .
g(x) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2. . .
看看这个和上面那个图的规律:
P-点: 即令 g(x) = 0 的 x 点!
N-点: 即令 g(x) > 0 的 x 点!
练习 HDU 1847 1849 1850 (做不出的话先看下面的,然后多思考)
最后看下组合博弈,就是把简单的游戏组合起来,比如3堆的可以看成3个一堆的游戏。
定理:
假设游戏 Gi的SG函数是gi, i=1,…,n, 则
G = G1 + … + Gn 的 SG函数是
g(x1,…,xn) = g1(x1)⊕…⊕gn(xn).
其中那个符合就是异或^
看看是不是和Nim游戏的结论差不多?
如果想理解原理链接在此:http://www.cnitblog.com/weiweibbs/articles/42735.html
看完以上的,做完以下的练习。能理解完基本差不多可以算入门了:
HDU 1848 1517 1536(做不出就思考,思考,多看几遍)