- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- Python的PyTorch+CNN深度学习技术在人脸识别项目中的应用
mosquito_lover1
python深度学习pytorchcnn
人脸识别技术是一种基于人脸特征进行身份识别的生物识别技术,其核心原理包括人脸检测、人脸对齐、特征提取、特征匹配、身份识别。一、应用场景安防:门禁、监控。金融:刷脸支付、身份验证。社交:自动标注、美颜。医疗:患者身份确认、情绪分析。二、关键技术深度学习:CNN在人脸检测、特征提取中表现优异。大数据:大规模数据集(如LFW、MegaFace)提升模型泛化能力。硬件加速:GPU、TPU等加速计算,提升实
- 【OpenCV-Python】——哈里斯/Shi-Tomas角检测&FAST/SIFT/ORB特征点检测&暴力/FLANN匹配器&对象查找
柯宝最帅
OpenCV学习计算机视觉人工智能
目录前言:1、角检测1.1哈里斯角检测1.2优化哈里斯角1.3Shi-Tomasi角检测2、特征点检测2.1FAST特征点检测2.2SIFT特征检测2.3ORB特征检测3、特征匹配3.1暴力匹配器3.2FLANN匹配器4、对象查找总结:前言:图像的特征是指图像中具有独特性和易识别性的区域,如角和边缘等。提取特征并对其进行描述,便于图像匹配和搜索。1、角检测1.1哈里斯角检测cv2.conerHar
- 计算机视觉——SIFT特征提取与检索算法
-shiba-
计算机视觉算法sift算法
计算机视觉——SIFT特征提取与检索算法1.基本介绍1.1算法特点1.2检测步骤2.基本原理2.1关键点2.2尺度空间2.3高斯模糊2.3.1高斯函数2.3.2高斯模糊2.3.3高斯金字塔2.4DOG函数2.4.1DOG函数的2.5关键点描述及匹配3.实验以及总结3.1实验数据集3.2提取图片SIFT特征,并展示特征点3.2.1代码3.2.2结果展示(选取)3.3计算两张图片SIFT特征匹配结果3
- 3dgs 2025 学习笔记
AI算法网奇
3d渲染学习笔记
CVPR20243D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)_cvpr2024-structure-awaresparse-viewx-ray3dreconstr-CSDN博客https://github.com/apple/ml-hugs3DGSCOLMAP-Free3DGaussianSplatting⭐codeprojectFeature3DGS
- DeepSeek 与网络安全:AI 驱动的智能防御
一ge科研小菜鸡
人工智能运维网络
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能(AI)的快速发展,深度学习技术正渗透到多个领域,从医疗诊断到自动驾驶,再到金融风险控制,AI以其强大的计算能力和数据分析能力改变着传统行业。而在网络安全领域,面对日益复杂和高频率的网络攻击,传统的防御体系正遭遇前所未有的挑战。攻击者利用自动化工具、社会工程学和新型攻击策略,使得传统基于规则和特征匹配的安全手段逐渐失效。在这样
- Colmap根据相机内外参数重建稀疏模型
失去对象的野指针
colmap计算机视觉
Colmap根据相机内外参数重建稀疏模型1.创建稀疏模型工作文件夹2.命令行执行稀疏重建2.1提取图像特征点2.2手动导入相机内参2.3特征匹配2.4三角测量官方文档:https://colmap.github.io/faq.html#reconstruct-sparse-dense-model-from-known-camera-poses参考博客:http://www.mamicode.com
- 双目视觉之获取三维坐标(立体校正、Q矩阵与三角测量原理)
乐平要加油啊
YOLO+双目视觉计算机视觉opencv
前言双目视觉是一种模拟人类立体视觉的计算机视觉技术,它通过两个相机从不同的角度拍摄同一个场景,然后利用三角测量原理,计算出场景中物体的三维坐标信息。这种技术在机器人导航、自动驾驶、物体跟踪、三维重建等领域有广泛的应用。获取三维坐标是双目视觉的核心任务之一。通过对左右相机拍摄的图像进行特征匹配和视差计算,我们可以得到场景中每个像素点的视差值。视差值表示了同一个物体在左右图像中的位置差异,它与物体距离
- 图像匹配---(Python)
阳光下的Smiles
Python图像处理
图像匹配---(Python)图像匹配分为以灰度为基础的匹配和以特征为基础的匹配:(1)灰度匹配是基于像素的匹配。灰度匹配通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系。(2)特征匹配则是基于区域的匹配。基于特征的匹配所处理的图像一般包含的特征有颜色特征、纹理特征、形状特征、空间位置特征等1、差分矩阵求和差分矩阵=图像A矩阵数据-图像B矩阵
- 特征匹配python-opencv代码
三十度角阳光的问候
pythonopencv开发语言
目录特征匹配算法介绍:Brute-Force蛮力匹配1对1的匹配k对最佳匹配特征匹配理论介绍:特征匹配python程序:特征点提取介绍:harris特征:####cv2.cornerHarris()-img:数据类型为float32的入图像-blockSize:角点检测中指定区域的大小-ksize:Sobel求导中使用的窗口大小-k:取值参数为[0,04,0.06]importcv2importnu
- python代码进行图像配准
@爱编程的郭同学
pythonopencv开发语言
这段代码演示了如何使用ORB特征检测器和特征匹配来进行图像配准。图像配准是将两幅图像对齐,使得它们在同一空间中表现出相似的视觉内容。一、效果图展示二、代码importcv2importnumpyasnp#读取两张图像#image1是RGBimage2是高光谱相机拍的伪RGB#iamge1和iamge2尺寸可以是不一样的image1=cv2.imread('datasets/image/ccc.bm
- 视觉slam十四讲学习笔记(六)视觉里程计 1
苦瓜汤补钙
视觉SLAM十四讲笔记机器学习ubuntu
本文关注基于特征点方式的视觉里程计算法。将介绍什么是特征点,如何提取和匹配特征点,以及如何根据配对的特征点估计相机运动。目录前言一、特征点法1特征点2ORB特征FAST关键点BRIEF描述子3特征匹配二、实践:特征提取和匹配三、2D-2D:对极几何1对极约束2本质矩阵3单应矩阵四、实践:对极约束求解相机运动五、三角测量总结前言1.理解图像特征点的意义,并掌握在单幅图像中提取出特征点,及多幅图像中匹
- 【图像配准】CVPRW21 - 深度特征匹配 DFM
我是大黄同学呀
读点论文-其他深度学习计算机视觉人工智能
文章目录相识相知回顾收录于CVPR2021ImageMatchingWorkshop,github地址:https://github.com/ufukefe/DFM相识图像配准(ImageRegistration)是计算机视觉领域中的一项重要任务,其旨在将不同角度/时间/模态等条件下获取的两张或多张图像进行匹配、叠加。图像匹配的核心在于找到每两幅图像间的对应关系(可以通过这个对应关系进行相互映射)
- DFM-无监督图像匹配
alex1801
深度学习图像配准匹配图像拼接
DFM:APerformanceBaselineforDeepFeatureMatching(深度特征匹配的性能基准)2021.06.14摘要提出了一种新的图像匹配方法,利用现成的深度神经网络提取的学习特征来获得良好的图像匹配效果。该方法使用预训练的VGG结构作为特征提取器,不需要任何额外的训练来提高匹配。灵感来自心理学领域成熟的概念,如心理旋转,初始扭曲是作为初步几何变换估计的结果而执行的(an
- OpenMVG(EXIF、畸变、仿射特征、特征匹配)
江河地笑
C++(图形图像)算法
本人之前也研究过OpenMVS但是对于OpenMVG只是原理层次的了解,因此乘着过年期间对这个库进行详细的学习。目录1OpenMVG编译与简单测试1.1sfm_data.json获取1.2计算特征2OpenMVG整个流程的运行测试3OpenMVG实战3.1SVG绘制3.2解析图片的EXIF信息3.3光学畸变3.4提取图像中的仿射特征点3.5对图像进行特征匹配(K-VLD)1OpenMVG编译与简单
- 第十一篇【传奇开心果系列】Python的OpenCV技术点案例示例:三维重建
传奇开心果编程
Python库OpenCV技术点案例示例短博文python计算机视觉opencv
传奇开心果短博文系列系列短博文目录Python的OpenCV技术点案例示例系列短博文目录一、前言二、OpenCV三维重建介绍三、基于区域的SGBM示例代码四、BM(BlockMatching)算法介绍和示例代码五、基于能量最小化的GC(GraphCut)算法介绍和示例代码六、相机标定介绍和示例代码七、特征提取与匹配介绍和示例代码八、三角测量介绍和示例代码九、通过特征匹配和RANSAC(Random
- Opencv学习笔记——特征匹配
纸箱里的猫咪
Opencv学习笔记opencv计算机视觉学习
文章目录Brute-Force蛮力匹配1对1的匹配k对最佳匹配随机抽样一致算法(Randomsampleconsensus,RANSAC)单应性矩阵Brute-Force蛮力匹配 通过SIFT算法可以得到图像关键点,通过比较两张图像的关键点,也就是比较关键点向量之间的差异,Brute-Force蛮力匹配通过比较特征向量,离得最近的特征向量也就是最相似的。默认的是用归一化的欧氏距离。bf=cv2.
- OpenCV学习记录——特征匹配
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、暴力匹配步骤分析二、代码分析前言特征匹配是一种图像处理技术,用于在不同图像之间寻找相似的特征点,并将它们进行匹配。特征匹配在计算机视觉和图像处理领域中具有广泛的应用,包括目标识别、图像拼接、三维重建等。一、暴力匹配步骤分析暴力匹配是一种简单直接的匹配方法,它遍历所有特征点的描述符,并计算它们之间的距离。然后根据距离进行排序,选择距离最短的特征点作为匹配点。虽然暴力匹配方法简单,但在
- opencv特征点匹配_opencv-python 4.2 BFMatcher匹配特征点
福建低调
opencv特征点匹配
importcv2frommatplotlibimportpyplotasplt#读取需要特征匹配的两张照片,格式为灰度图。img1=cv2.imread("water1.jpg",0)img2=cv2.imread("water2.jpg",0)#BFMatcher匹配orb=cv2.ORB_create()#建立orb特征检测器kp1,des1=orb.detectAndCompute(img
- 2023-01-12日志
独孤西
今天一切照常,仍然是正常学习的一天,不过今天编程部分有点划水了,然后今天看了一篇直博生分享日常的知乎,颇有感悟。学习方面仍然是老三套。SLAM部分今天把第八讲预习与视频学习部分任务做完,明天应该完成实践理解与作业,第八讲主要是讲了一个光流法一个直接法,光流法仍然是特征法的一种,只不过特征匹配部分使用了光流追踪的方法进行,而直接法是与特征法完全不同的,直接法直接对光度误差进行优化,边调整位姿边确定对
- 三维重建经典论文合集汇总
深蓝学院
人工智能三维重建视觉
三维重建涉及计算机视觉、图形学等多门知识,是一套非常复杂的系统。经典三维重建系统包括整个pipeline从相机标定、基础矩阵与本质矩阵估计、特征匹配到运动恢复结构(SFM),从SFM到稠密点云重建、表面重建、纹理贴图。其中,熟悉SFM的工程师已经是行业内的佼佼者,能掌握稠密点云重建与表面重建的工程师更是凤毛麟角。图1经典三维重建系统pipeline三维重建是当下计算机视觉的一个研究热点,虽然从业者
- Opencv + MediaPipe -> 手势识别
大大Cameo
计算机视觉人工智能计算机视觉opencv视觉检测
一、概述OpenCV(OpenSourceComputerVisionLibrary)是一个跨平台的计算机视觉库,它提供了许多用于图像和视频处理的功能,包括图像和视频的读取、预处理、特征提取、特征匹配、目标检测等。OpenCV是C++编写的,也提供了Python、Java等语言的接口,可以方便地在不同平台上使用。OpenCV已经被广泛应用于工业自动化、安防监控、机器人、医疗诊断、智能交通等领域。M
- 基于python的客流统计_客流统计分析系统的技术
weixin_39693437
基于python的客流统计
客流统计分析系统采用了基于运动目标智能跟踪与识别技术,并通过人工神经网络(ANN)、关键特征匹配等算法和智能统计模型,对指定单个或多个监控系统区域(如场馆、商业街、地铁出入口、展会场馆)客流进行视频监控、运动分析和特征分类,精确检测出通过该区域客流量数据,实现对客流数据的精确、双向统计。不同于热区,客流热区是一款针对于景区经营管理所诞生的一种客流分析工具,所谓的客流热区是指在一定的经营范围之内,全
- 12. 双目视觉之极线矫正
宛如新生
slam中的标定问题数码相机
目录1.为何要进行极线矫正?2.极线矫正过程。1.为何要进行极线矫正?之前的文章立体视觉基础中介绍单目相机无法获得深度信息,我们可以通过多个相机来实现立体视觉。通过两个相机对某场景同时观测时,当我们知道了相机的内(外)参以及两者之间的基线,然后通过某种方式找到两相机对同一世界点的观测的关联关系(类似特征匹配),就可以计算出视差,最终通过下列公式计算出观测到的世界点的深度。我们假设双目相机已经标定完
- 三维重建(7)--运动恢复结构SfM系统解析
Struart_R
三维重建人工智能计算机视觉三维重建三维建模
目录一、SfM系统(两视图)1、特征提取2、特征匹配3、RANSAC求解基础矩阵F4、完整的欧式结构恢复算法流程二、基于增量法的SfM系统(以OpenMVG为例)1、预处理2、图像特征点提取与匹配3、两视图重构点云4、增加新视图,多视图重构一、SfM系统(两视图)对于欧式结构恢复的两视图问题,需要获得三维场景的m张图像的像坐标作为已知条件,求解三维场景结构(即三维点坐标),m个摄像机的外参数R和T
- 如何学习计算机视觉
人工智能技术与咨询
人工智能自然语言处理计算机视觉
学习计算机视觉可以通过以下步骤进行:了解基本概念和原理:首先,你可以学习计算机视觉的基本概念和原理,包括图像处理、特征提取、目标检测、物体识别等。这些基础知识将帮助你理解计算机视觉的工作原理。学习算法和技术:学习计算机视觉的算法和技术是非常重要的。你可以学习一些常用的计算机视觉算法,如边缘检测、图像分割、特征匹配等。同时,你还可以学习一些常用的计算机视觉技术,如深度学习、卷积神经网络等。实践项目:
- 常用的目标跟踪有哪些
道亦无名
人工智能目标跟踪人工智能计算机视觉
目标跟踪是计算机视觉领域的一个重要研究方向,主要用于实现视频监控、人机交互、智能交通等领域。下面介绍几种常用的目标跟踪方法:特征匹配法特征匹配法是目标跟踪中最基本的方法之一,其基本原理是通过提取目标的特征,然后在连续的帧间进行匹配,从而实现目标跟踪。常用的特征包括颜色、纹理、边缘、角点等。该方法简单易行,但是对于目标形变、遮挡等情况的适应性较差。背景减除法背景减除法是一种基于图像差分的方法,其基本
- SLAM中使用闭环检测进行重定位 以及C++代码实现
稻壳特筑
C++激光SLAMc++开发语言
目录使用特征匹配算法,在当前帧与地图中所有关键帧之间进行匹配。对匹配结果进行评分,保留得分较高的匹配。对保留的匹配进行验证,判断是否构成闭环。如果构成闭环,则计算闭环帧与当前帧之间的位姿。SLAM中使用闭环检测进行重定位的步骤如下:使用特征匹配算法,在当前帧与地图中所有关键帧之间进行匹配。对匹配结果进行评分,保留得分较高的匹配。对保留的匹配进行验证,判断是否构成闭环。如果构成闭环,则计算闭环帧与当
- python数字图像处理基础(九)——特征匹配
_hermit:
数字图像处理pythonopencv开发语言计算机视觉
目录蛮力匹配(ORB匹配)RANSAC算法全景图像拼接蛮力匹配(ORB匹配)Brute-Force匹配非常简单,首先在第一幅图像中选取一个关键点然后依次与第二幅图像的每个关键点进行(描述符)距离测试,最后返回距离最近的关键点.对于BF匹配器,首先我们必须使用**cv2.BFMatcher()**创建BFMatcher对象。它需要两个可选的参数:normType:它指定要使用的距离测量,默认情况下,
- 为什么需要WAF
鞋子上的青泥点
WAF是专门为保护基于web应用程序而设计的,不像传统的防火墙,是基于互联网地址和端口号来监控和阻止数据包。一个标准的端口号对应一种网络应用程序类型。它的出现是由于传统防火墙无法应对应用层的攻击进行有效抵抗。并且IPS也无法从根本上防护应用层的攻击,因此出现了web应用防火墙系统。WAF是一种基础的安全保护模块,通过特征提取和分块检索技术进行特征匹配,主要针对HTTP访问的web程序保护。WAF部
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟