- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- 神经网络-损失函数
红米煮粥
神经网络人工智能深度学习
文章目录一、回归问题的损失函数1.均方误差(MeanSquaredError,MSE)2.平均绝对误差(MeanAbsoluteError,MAE)二、分类问题的损失函数1.0-1损失函数(Zero-OneLossFunction)2.交叉熵损失(Cross-EntropyLoss)3.合页损失(HingeLoss)三、总结在神经网络中,损失函数(LossFunction)扮演着至关重要的角色,它
- 自信
净域
今天我打击了某人的自信我的自信回来了损有余而补不足不得不说我喜欢这个特殊的正能量不是会放大缩小而是类似熵平衡的那种奇怪的平衡
- 几率odds与逻辑回归
元气小地瓜
https://www.jianshu.com/p/aa73938f32ee几率odds从Odds角度理解LogisticRegression模型的参数13December20151.引言无论在学术界,还是在工业界,LogisticRegression(LR,逻辑回归)模型[1]是常用的分类模型,被用于各种分类场景和点击率预估问题等,它也是MaxEntropy(ME,最大熵)模型[2],或者说So
- 毕设项目 基于特征熵值分析的网站分类系统实现(源码+论文)
iuidfds
毕业设计毕设
文章目录0项目说明1研究目的2研究方法3研究结论4各模块介绍4.1爬虫模块功能与技术4.2网页处理模块功能与技术4.3特征提取与文本特征表示模块功能与技术4.4分类器模块功能与技术5项目源码6论文目录7最后0项目说明基于特征熵值分析的网站分类系统实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1研究目的本设计对KNN算法的缺陷产生原因进行详细地分析,并针对缺陷对算法进行了引入属性熵值等一
- 【机器学习】4 ——熵
qq_43507078
我的机器学习机器学习人工智能
机器学习4——熵文章目录机器学习4——熵前言前言熵衡量随机变量不确定性,由克劳德·香农(ClaudeShannon)在1948年提出,称为香农熵。反映了一个系统中信息的混乱程度或信息量。其定义为:H(P)=−∑xP(x)logP(x)H(P)=-\sum_{x}^{}P(x)logP(x)H(P)=−x∑P(x)logP(x)其中:X是一个随机变量,它有种可能的取值P(x)是X取值为x的概率。熵H
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- AttributeError: ‘tuple‘ object has no attribute ‘shape‘
晓胡同学
keras深度学习tensorflow
AttributeError:‘tuple’objecthasnoattribute‘shape’在将keras代码改为tensorflow2代码的时候报了如下错误AttributeError:'tuple'objecthasnoattribute'shape'经过调查发现,损失函数写错了原来的是这样model.compile(loss=['binary_crossentropy'],optimi
- 两种常用损失函数:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
大多_C
人工智能算法python机器学习
两种用于模型训练的损失函数:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种损失函数的详细介绍。1.nn.CrossEntropyLossnn.CrossEntropyLoss是PyTorch提供的交叉熵损失函数,通常用于多分类任务中。它结合了softmax激活函数和负对数似然损失(NegativeLo
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- Focal Loss的简述与实现
友人Chi
人工智能机器学习深度学习
文章目录交叉熵损失函数样本不均衡问题FocalLossFocalLoss的代码实现交叉熵损失函数Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)Loss=L(y,\hat{p})=-ylog(\hat{p})-(1-y)log(1-\hat{p})Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)其中p^\hat{p}p^为预测概率大小。此处的交叉
- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- 2021-07-23——第23课:每个人的生命中需要一名个人成长教练——学习打卡
a吃饭
有几年时间,我都是掉到自己的情绪和事件里面,一直没跳出来。每次鼓起信念去坚持,然后遇到点什么情绪,就被打败了。一段时间后又鼓起勇气去尝试,然后发生了点什么事,就又被打败了。就这样反反复复几年后,我加入了007,7天写一篇的节奏,不快,但是有时候我还是很艰难才坚持下来,但是一年多后,我发现我可以很轻松了。就像现在,我已经做到日更一百多天了。我才发现,我是受到了007里正向人的影响。以前闭门造车,熵不
- 如何利用python实现碰撞原理
加密社
福利资源区块链python开发语言
先看图跑了大概一天这是结果具体是通过BIP39规则生成的种子数据生成完词组后,再根据词组生成姨太地址#生成随机助记词defgenerate_mnemonic():entropy=os.urandom(16)#随机生成16字节熵mnemonic=[]foriinrange(12):#生成12个助记词word_index=int.from_bytes(entropy[i:i+1],'big')%len
- 《逆熵增成长之路》:如何让学到的知识更有价值?
米卡写作
今天继续阅读《逆熵增成长之路》第六章:输入-思考-思考篇,有以下3个感悟,分享给大家。1.什么样的知识值得学?2.如何提高学习效率?3.如何让知识变得更有价值?认真看完,你一定会有所收获。01.什么样的知识值得学?人们常说:你接触什么样的信息,决定你成为什么样的人。这就需要我们控制好自己的信息输入源,包括看什么书、关注什么样的公众号、视频号等。那什么是好的信息输入源呢?《逆熵增成长之路》上提到的4
- 【论文简介】Circle Loss: A Unified Perspective of Pair Similarity Optimization
萝莉狼
machinelearningcirclelossdeepfeaturelearning
CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization旷世cvpr2020的一篇文章,站在更高的视角,统一了deepfeaturelearning的两大基础loss:基于class-levellabel的loss(如softmax+crossentropy)和基于pair-wiselabel的loss(如tripletloss),指出了
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 心熵,心流,以及复盘3R
热血青年John
今天学到了两个新词汇---心熵和心流。用自己的话来反馈一下。在化学反应体系里,熵值越大,反应越不稳定。大脑思维不集中的时候瞻前顾后,或者思维活跃的有些可怕一会儿思考宇宙尽头人类与黑洞的联系一会儿纠结待会儿吃啥,大脑处于一种混乱状态,意识里可能只有几个念头,但潜意识里可能有多得多的念头在相互碰撞,争夺者你的注意力和大脑的控制权,这时候你的大脑就像是一个热气膨胀的锅,里面的热烫的气体肆意翻腾,照顾之间
- 机器学习和深度学习中常见损失函数,包括损失函数的数学公式、推导及其在不同场景中的应用
早起星人
机器学习深度学习人工智能
目录引言什么是损失函数?常见损失函数介绍3.1均方误差(MeanSquaredError,MSE)3.2交叉熵损失(Cross-EntropyLoss)3.3平滑L1损失(SmoothL1Loss)3.4HingeLoss(合页损失)3.5二进制交叉熵损失(BinaryCross-EntropyLoss)3.6KL散度(KLDivergence)3.7Huber损失(HuberLoss)3.8对比
- BCEWithLogitsLoss
hero_hilog
算法pytorch
BCEWithLogitsLoss是PyTorch深度学习框架中的一个损失函数,用于二元分类问题。它结合了Sigmoid激活函数和二元交叉熵损失(BinaryCrossEntropyLoss),使得在训练过程中更加数值稳定。特点:数值稳定性:直接使用Sigmoid函数后跟BCE损失可能会遇到数值稳定性问题,特别是当输入值非常大或非常小的时候。BCEWithLogitsLoss通过内部使用Logi
- 数学基础 -- 梯度下降算法
sz66cm
算法人工智能数学基础
梯度下降算法梯度下降算法(GradientDescent)是一种优化算法,主要用于寻找函数的局部最小值或全局最小值。它广泛应用于机器学习、深度学习以及统计学中,用于最小化损失函数或误差函数。梯度下降的基本概念梯度下降算法通过以下步骤工作:初始化参数:随机初始化模型的参数(如权重和偏差),也可以用特定的策略初始化。计算损失:对当前模型输出和实际目标值计算损失(如均方误差、交叉熵等)。计算梯度:计算损
- 一屋不扫,何以扫天下
活着不易
“一屋不扫,何以扫天下”这篇作文在我初中的时候就写过,无非是人首先要修炼自己,自身本领强,方能打天下。人应该有自己的良好习惯、行为举止,包括处所洁净........如今看来当时我是懂了道理,却并不深刻。人到中年方知“使熵值减小”的人才能自食其力、有所成就、有所作为。只有不断对自己整合,才能不断进步和接近完美。而熵是什么?熵即混乱度,越混乱熵值就会越大。一个人总是乱糟糟的,毫无计划,东西乱放,衣服乱
- 2019给吴军老师的第一封信
启航_FLY
吴军老师好:所谓信息的相关性,可以从宏观和微观两个角度思考。从宏观的角度上讲就是要把信息放到系统中去思考。因为在系统中信息的形态是不断变化的,这一点对于使用信息,继而要认识、利用和改变系统的人是十分重要的,信息的形式虽然分散,但基于某种原因,却往往能在有意无意间汇聚成一条条或大或小的脉络,其核心正是老师提到的人类认知世界的本源。物质也好,能量也罢,在历史的演化中都逃不过一个目的性。因为信息负熵迫使
- 王晓芳在增长势能课上提到的这个定律,为什么让全宇宙都绝望?
晓芳聊职场
王晓芳在增长势能课上提到的这个定律,为什么让全宇宙都绝望?企业家最深的痛就是增长乏力---王晓芳授课老师|王晓芳壹创新商学创办人2019年壹创新商学课上,王晓芳教授分享了“熵增定律”,同时以华为为例,讲述了企业管理是如何通过“耗散结构”进行“反熵增”,从而活下去。熵增定律,也叫“热力学第二定律”。这是德国人克劳修斯提出的理论,最初用于揭示事物总是向无序的方向的发展、以及“孤立系统下热量从高温物体流
- 将自己产品化
飞叶灵
今天开始读《纳瓦尔宝典》,文章开篇的核心,人生应该让自己走思维体系和思维模式更新之路。在各个学科中建立自己的思维体系,高数中微积分的思维体系,大物中的熵的思维体系,《道德经》中天人合一,道法自然体系等等。像樊登老师最喜欢提及的认知ABC的看法模型一样,我们需要在各种知识、宗教、娱乐中学习提升自己看到每一件事情发生的产生的影响的看法B,通过看法B把那些不如意的事情看到背后的祝福……这不由让我想起了,
- 基于熵权法对Topsis模型的修正
钰见梵星
数学建模算法
基于熵权法对Topsis模型的修正有n个要评价的对象,m个评价指标的标准化矩阵,可以使用层次分析法给这m个评价指标确定权重∑j=1mωj=1\sum_{j=1}^m{\omega_j}=1j=1∑mωj=1层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)熵权法是一种客观赋权方法依据的原理:指标的变异程度越小,所反映的信息量也越少,
- CEEMDAN(自适应噪声完备集合经验模态分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵
2301_78492934
人工智能算法深度学习信号处理matlab
CEEMDAN(自适应噪声完备集合经验模态分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵对序列信号进行CEEMDAN(自适应噪声完备集合经验模态)分解后计算各分解分量峭度值、能量熵、近似熵、模糊熵、排列熵、多尺度排列熵、样本熵,程序实用性高,适合故障诊断、功率预测等研究方向信号处理。并输出分解图、包络图、包络谱图、峭度值图、频谱图。下面对所涉及算法及运行效果进行介绍好的,下面
- SGMD(辛几何分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵
2301_78492934
人工智能matlab信号处理
对序列信号进行SGMD(辛几何分解)分解后计算各分解分量峭度值、能量熵、近似熵、模糊熵、排列熵、多尺度排列熵、样本熵,程序实用性高,适合故障诊断、功率预测等研究方向信号处理。可输出分解图、包络图、包络谱图、峭度值图、频谱图。从Excel表格中读取,直接替换数据就可以使用,matlab代码SGMD(辛几何模态分解)辛几何模态分解(SGMD)是一种基于辛几何理论的信号分解方法。辛几何是一种数学框架,用
- 蓝桥杯刷题--python-9(2023填空题2)
芝士小熊饼干
l蓝桥杯刷题python蓝桥杯python
001串的熵-蓝桥云课(lanqiao.cn)importmathn=23333333foriinrange(1,n>>1):j=n-ia=-(i/n)*(math.log2(i/n))*i-(j/n)*(math.log2(j/n))*ja=round(a,4)ifa==11625907.5798:print(i)break0求和-蓝桥云课(lanqiao.cn)n=20230408print(
- 4D习书-第十四章 人们需要被包融的感觉
明心悦己
本章主要讲述了人们为什么需要包融和包融的好处。A.我的关注点马斯洛的需求层次理论说明人们在感到被感激和包融之前,不可能向更高层的任务(解决问题或者进行创造)迈进。最好的说服是用上耳朵,因为人们需要被聆听的感觉。M.情绪和内心独白的确是这样的,如果人们没有感觉到舒服,就会有精神熵,会限制他们的创造性。B.让自己更好的行动耐心听老公说话,除了向他表示感激,更多去倾听、包融他的行为,让他在家里感觉到舒服
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交