- ORBSLAM3 运行流程 以rgbd_tum.cc函数为例进行分析
水理璇浮
ORBSLAM3数码相机
一、运行使用的是D435i相机自己录制的数据。运行命令:./Examples/RGB-D/rgbd_tum'/opt/vslam/ORB_SLAM3_detailed_comments-dense_map_new/Vocabulary/ORBvoc.txt''/opt/vslam/ORB_SLAM3_detailed_comments-dense_map_new/Examples/RGB-D/TU
- OpenVSLAM在Ubuntu16.04下编译安装
hhh0209
vslamlinux
最近开始学习VSLAM,理论知识大概了解了一下,想要学透还是需要下一番功夫的。为了领导的任务,先把OpenVSLAM装上,跑个demo看看。我平时用windows比较多,改成Linux还是得适应一下。参考资料主要有:1参考12参考23官方安装文档按着这些教程,基本能安装下来,中间也会有些小问题,记录如下:1,参考1里的依赖安装第10条我没有安装成功;2,我的OPENCV是3.4.0版本;3,安装y
- VSLAM中的特征点三角化
nice-wyh
算法
特征点三角化(Triangulation)是VSLAM中一个非常基础的问题,它是根据特征点在多个相机下的投影恢复出特征点的3D坐标。特征点在某个相机中被观测到,根据相机位姿和观测向量可以得到3D空间中的一条从相机中心出发的观测“射线”,多个相机位姿观测会产生多条观测射线,理想情况下这些观测射线相交于空间中一点,求所有观测射线的交点就是特征点在3D空间的位置,这就是三角化最朴素的思想。实际中由于噪声
- 导航与定位技术已成为移动机器人的核心技术之一
Fuweizn
移动机器人自动化生产线AGV智能搬运机器人自动化机器人工业自动化
随着移动机器人技术的不断发展和应用领域的扩大,导航与定位技术已成为移动机器人的核心技术之一。本文将介绍移动机器人导航与定位技术的发展现状、技术前沿和面临的挑战。一、导航与定位技术的发展现状移动机器人的导航与定位技术是实现自主移动的关键。目前,移动机器人的导航与定位技术主要包括基于GPS、SLAM、VSLAM等技术的方法。1、GPS导航技术:利用全球定位系统进行定位,精度高、覆盖范围广,但需要外部信
- vslam论文24:ESVIO: 基于事件相机的双目VIO(RAL 2023)
xsyaoxuexi
视觉SLAM论文阅读c++人工智能学习笔记
摘要异步输出低延迟事件流的事件相机为具有挑战性的情况下的状态估计提供了很大的机会。尽管近年来基于事件的视觉里程测量技术得到了广泛的研究,但大多数都是基于单目的,而对立体事件视觉的研究很少。在本文中,我们介绍了ESVIO,这是第一个基于事件的立体视觉惯性里程计,它利用了事件流、标准图像和惯性测量的互补优势。我们建议的pipeline包括ESIO(纯基于事件的)和ESVIO(带有图像辅助的事件),它们
- vslam论文25: 结构约束的RGB-D SLAM(ICRA 2021)
xsyaoxuexi
视觉SLAM论文阅读c++平面学习计算机视觉笔记
摘要本文提出了一种专门为结构化环境设计的RGB-DSLAM系统,旨在通过从周围提取的几何特征来提高跟踪和制图精度。除了点之外,结构化环境还提供了大量的几何特征,如线和平面,我们利用这些特征来设计SLAM系统的跟踪和映射组件。对于跟踪部分,我们基于曼哈顿世界(MW)的假设探索这些特征之间的几何关系。我们提出了一种基于点、线和面的解耦优化方法,以及在附加的姿态优化模块中使用曼哈顿关系。在建图部分,以较
- vslam论文10:PL-VINS:具有点和线特征的实时单目视觉惯性SLAM
xsyaoxuexi
视觉SLAM论文阅读笔记c++
摘要PL-VINS是基于最先进的基于点的VINS-mono,开发的一种基于点和线特征的实时、高效优化的单目VINS方法。我们观察到,目前的作品使用LSD算法提取线条特征;然而,LSD是为场景形状表示而设计的,而不是为姿态估计问题设计的,由于其高昂的计算成本,这成为了实时性能的瓶颈。在本文中,我们通过研究隐藏参数调整和长度抑制策略来改进LSD算法。改进后的LSD算法的运行速度至少是LSD的三倍。此外
- vslam论文15:DynaVINS: 一种动态环境下的视觉惯性SLAM(ICRA 2023)
xsyaoxuexi
视觉SLAM论文阅读笔记c++学习
摘要视觉惯性里程计和SLAM算法广泛应用于服务机器人、无人机和自动驾驶汽车等领域。大多数SLAM算法都是基于假设地标是静态的。然而,在现实世界中,存在着各种各样的动态物体,它们降低了姿态估计的精度。此外,临时静态对象(在观察期间是静态的,但在视线之外时移动)会触发误报循环关闭。为了克服这些问题,我们提出了一种新的视觉惯性SLAM框架,称为DynaVINS,它对动态目标和临时静态目标都具有鲁棒性。在
- vslam论文23:VIP-SLAM: 一种高效、紧耦合的RGB-D视觉惯性平面SLAM(ICRA 2022)
xsyaoxuexi
视觉SLAM论文阅读平面人工智能算法笔记c++学习
摘要本文提出了一种融合RGB、Depth、IMU和结构化平面信息的紧密耦合SLAM系统。传统的基于稀疏点的SLAM系统总是保持大量的地图点来建模环境。大量的地图点给我们带来了很高的计算复杂度,使其难以部署在移动设备上。另一方面,平面是人造环境尤其是室内环境中常见的结构形式。我们通常可以使用少量的平面来表示一个大的场景。因此,本文的主要目的是降低基于稀疏点的SLAM的高复杂性。我们构建了一个轻量级的
- vslam论文8:EPLF-VINS: Real-Time Monocular Visual-InertialSLAM With Efficient Point-Line Flow Features
xsyaoxuexi
视觉SLAM论文阅读人工智能学习自动驾驶c++
(RAL2023)摘要本文介绍了一种利用点和线特征的高效视觉惯性同步定位和映射(SLAM)方法。目前,基于点的SLAM方法在弱纹理和运动模糊等场景下表现不佳。许多研究者注意到线特征在空间中的优异特性,并尝试开发基于线的SLAM系统。然而,线条提取和描述匹配过程的计算量巨大,难以保证整个SLAM系统的实时性,而错误的线条检测和匹配限制了SLAM系统性能的提高。本文通过短线融合、线特征均匀分布、自适应
- vulkan shader变换--Apple的学习笔记
applecai
关于图形变换,之前就做过专题学习过了。再快速复习下正交矩阵及矩阵变换的python实现--Apple的学习笔记其实主要的变换包括缩放,平移,旋转,衍射。另外二维图形主要都是按坐标旋转,三维图形都是按轴旋转的。关键点需要知道坐标系。然后代码工程显示的照片是相机视角的,所以还需要了解世界坐标/物体坐标/相机坐标/图像坐标的概念及转换。之前学习vslam的时候都学习过了。所以有了这些基础,我就直奔主题将
- 手撕 视觉slam14讲 ch13 代码 总结
全日制一起混
手撕VO篇视觉slam十四讲SLAMc++计算机视觉ubuntu
运行效果(Kitti00)4倍速一、代码GitHub-tzy0228/Easy-VO-SLAM:VSLAM-CH13工程代码注释版本二、编译过程踩坑视觉SLAM十四讲第二版ch13编译及运行问题_全日制一起混的博客-CSDN博客三、代码解读手撕视觉slam14讲ch13代码(1)工程框架与代码结构-CSDN博客手撕视觉slam14讲ch13代码(2)基本类的抽象_全日制一起混的博客-CSDN博客手
- 【VSLAM】ORB-SLAM3安装部署与运行
DevFrank
c++CV计算机视觉与音视频机器人rosslam
心口如一,犹不失为光明磊落丈夫之行也。——梁启超文章目录:smirk:1.ORB-SLAM3介绍:blush:2.代码安装部署1.安装ros与opencv2.安装Pangolin作为可视化和用户界面3.安装Eigen3一个开源线性库,可进行矩阵运算4.安装ORB-SLAM3:satisfied:3.案例运行1.运行数据集2.用真实相机usb_cam运行1.ORB-SLAM3介绍ORB-SLAM3是
- VSLAM(7):后端优化---滤波器方法和BA图优化
聪明的笨小子
视觉SLAM14讲python算法
在视觉里程计完成每次的位姿估计后,可以实时地得到一个短时间内的轨迹和地图点,但是由于估计本身具有误差,这个误差会一直保持并不断累加。所以可以构建一个尺度和规模更大的优化问题,来计算一段长时间内的最有轨迹和地图。一,后端优化综述SLAM问题可以由运动方程和观测方程描述,设从t=0到t=N这个时间段内,机器人经过了到的位姿点,观测到了这么多的特征点,那么有:视觉前段往往在某一时刻会观测很多的特征点,所
- vslam论文14:Monocular Visual-Inertial Odometry with Planar Regularities(ICRA 2023)
xsyaoxuexi
视觉SLAM论文阅读c++学习笔记
摘要最先进的单目视觉惯性里程计(VIO)方法依赖于稀疏点特征,部分原因是它们的效率、鲁棒性和普遍性,而忽略了高级结构规律,如平面,这些在人造环境中很常见,可以用来进一步约束运动。一般来说,由于平面的存在空间很大,可以用相机观察平面很长一段时间,因此可以进行长期导航。所以,在本文中,我们设计了一种新颖的实时单目VIO系统,该系统在轻量级多状态约束卡尔曼滤波器(MSCKF)中由平面特征完全正则化。我们
- vslam论文21:基于点、面图的高效视觉惯性导航(ICRA 2023)
xsyaoxuexi
视觉SLAM论文阅读笔记学习c++平面
摘要相对于全局先验地图,精确和实时的全局姿态估计在许多应用中是必不可少的,例如微型飞行器和增强现实的物流。假设纯稀疏的三维点图可以提供环境的无结构表示,那么生成点平面先验图可以进一步建模环境拓扑并为精确定位提供全局约束。为了实现这一点,我们提出了一个基于滤波器的大规模视觉惯性里程计系统,称为PPM-VIO,它利用点平面图来纠正累积漂移。该系统利用语义信息检测稀疏点云的共面信息,通过几何约束、语义约
- vslam论文1:Range-Focused Fusion of Camera-IMU-UWB for Accurate and Drift-Reduced Localization(RAL2021)
xsyaoxuexi
视觉SLAM论文阅读数码相机
准确、低飘移定位的相机-IMU-UWB聚焦距离融合摘要:在这项工作中,我们提出了一种紧耦合的单目摄像机、6自由度IMU和单个未知UWB锚融合方案,以实现精确和减少漂移的定位。具体地说,该文章聚焦于将UWB传感器整合到现有的最先进的视觉惯性系统。为实现这一目标,之前的工作使用单个最近的UWB距离数据来更新滑动窗口中的机器人位置(“聚焦位置”),并展示了令人鼓舞的结果。然而,这些方法忽略了:1)UWB
- vslam论文4:Dynam-SLAM: An Accurate, Robust Stereo Visual-Inertial SLAM Method in Dynamic Environments
xsyaoxuexi
视觉SLAM论文阅读论文阅读人工智能自动驾驶c++目标检测
出版:TRO2022摘要大多数现有的基于视觉的SLAM系统及其变体仍然假设观测是绝对静态的,无法在动态环境中表现良好。在这里,我们介绍了Dynam-SLAM(Dynam),这是一种双目视觉惯性SLAM系统,能够在高动态环境中实现稳健、准确和连续的工作。我们的方法致力于将双目场景流与惯性测量单元(IMU)松耦合,用于动态特征检测,并将动态特征和静态特征与IMU测量紧耦合以进行非线性优化。首先,对测量
- vslam论文2:FEJ-VIRO: A Consistent First-Estimate Jacobian Visual-Inertial-Ranging Odometry( IROS-2022)
xsyaoxuexi
视觉SLAM论文阅读人工智能目标跟踪自动驾驶c++
FEJ-VIRO:一种一致的第一估计雅可比视觉-惯性-测距里程计一、摘要最近几年,VIO已经实现了很多显著的进步。然而,VIO方法在长期轨迹中会遭受定位飘移。在这篇文章中,我们提出FEJ-VIRO通过一致地将UWB测量值整合到VIO框架去减少VIO的定位飘移。考虑到UWB锚的原始位置通常无法获取,我们提出一种长短窗结构去初始化UWB锚的位置,和状态增广的协方差。初始化后,FEJ-VIRO同时估计U
- 德鲁周记06--VSLAM从入门到入坟
安德鲁JANKENPAN
德鲁周记SLAMslam
VSLAM入门介绍基础知识三维空间的刚体运动欧式变换四元数欧拉角李群与李代数线性拟合相机单目相机双目相机深度相机基本框架视觉里程计特征匹配ORB直接法对比后端优化EKFBA(BundleAdjustment)回环检测建图因为研究生的工程实践我选择了这个方向,这两周一直在学VSLAM,看完了高翔老师的视频和《视觉SLAM十四讲》,强烈推荐!!!入门必看,神书!!当然我第一遍自我感觉是肯定没看太懂的,
- 【VSLAM系列】三:Vins-Mono论文笔记
塞拉摩
视觉SLAM论文阅读数码相机人工智能
VINs-Mono论文1.VINS-Mono的特点:1.未知初始状态的鲁棒性初始化过程2.带imu-camera外参校准和imu校准的紧耦合,基于非线性优化的单目VIO系统3.在线重定位和四个自由度的全局姿态图优化。4.姿态图可以保存,加载,并和局部姿态图进行合并。2.传感器数据处理摄像头和imu数据融合方法:1.松耦合法,imu是独立于摄像头的模块,常使用EKF算法,imu数据此时用于状态传播,
- vSLAM中IMU预积分的作用--以惯性导航的角度分析
清风微升至
视觉SLAM数码相机
作为一个学过一点惯导的工程师,在初次接触视觉slam方向时,最感兴趣的就是IMU预积分了。但为什么要用这个预积分,在看了很多材料和书后,还是感觉模模糊糊,云里雾里。在接触了vSLAM的更多内容后,站在历史研究者的角度去分析,得到了一个更为清晰的作用分析。首先,需要明确IMU与相机这两种传感器的互补作用,这是为什么要用IMU的原因。直接贴出程博书中的内容,总结的比较全面了。总之,就是相机成像的缺点可
- Semantic Visual Simultaneous Localization andMapping: A Survey 语义视觉同步定位与映射研究综述 粗翻
尤齐
深度学习机器学习人工智能python算法
2021摘要视觉同步定位与映射(vSLAM)在计算机视觉和机器人领域取得了巨大进展,并已成功应用于自主机器人导航和AR/VR等许多领域。然而,vSLAM无法在动态和复杂的环境中实现良好的本地化。近年来,许多出版物报道,通过将语义信息与vSLAM相结合,语义vSLAM系统具有解决上述问题的能力。然而,还没有关于语义vSLAM的全面调查。为了填补这一空白,本文首先回顾了语义vSLAM的发展,明确强调了
- SLAM总览【自学备忘】
Yup_Boss
矩阵
SLAM一、VSLAM1、库1.1Sophus库1.1.1Sophus库安装1.1.2Sophus库函数一、VSLAM1、库1.1Sophus库Eigen库是一个开源的C++线性代数库,它提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。但是Eigen库提供了集合模块,但没有提供李代数的支持。一个较好的李群和李代数的库是Sophus库,它很好的支持了SO(3),so(3),SE(3)和se(
- OpenVSLAM源码阅读
释怀°Believe
#视觉SLAM人工智能
⚡⚡⚡通过src下面的CMakeLists.txt开始构建项目add_subdirectory(stella_vslam)上面这句代码向CMake告知在当前项目中引入一个子目录,并在子目录中查找另一个CmakeLists.txt文件来构建项目在stella_vslam子目录中的CMakeLists.txt文件将描述如何构建stella_vslam子项目,可能包括源文件、编译选项、链接库等。主项目的
- 博客学习目录
Howe_xixi
学习
填坑专区,督促自己有系统的学习归纳。先把想学的挖个坑,一边填坑一边挖坑。怕什么真理无穷,进一步有一步的欢喜。目录【基础学科学习】【线性代数笔记】《3Blue1Brown》笔记【SLAM】【VSLAM笔记】《视觉SLAM十四讲》学习笔记Smoothly-VSLAM学习笔记【嵌入式开发】【鸿蒙开发笔记】OpenHarmony北向学习笔记【Linux系统】【编程语言学习】【C++笔记】【Python笔记
- 【VSLAM系列】四:Vins-Mono源码学习笔记
塞拉摩
视觉SLAM学习笔记opencv
VINS-Mono源码工程化技巧:滑动窗口的优化方式–>控制计算量同时实现优于滤波方法的里程计高效的去畸变操作–>实时性优于opencv且精度不会下降的去畸变不同实时性要求的处理方法–>后端实时性要求高于回环优点:套件价格、功耗、尺寸优势明显快速鲁棒的单目IMU初始化过程紧耦合的后端优化,在优化VIO位姿的同时还兼顾外参标定,零偏估计以及传感器延时估计回环检测功能,便于构建全局一致性更好的位姿和地
- 【深蓝学院】手写VIO第7章--VINS初始化和VIO系统--笔记
读书健身敲代码
笔记
0.内容1.VIO回顾整个视觉前端pipeline回顾:两帧图像,可提取特征点,特征匹配(描述子暴力匹配或者光流)已知特征点匹配关系,利用几何约束计算relativepose([R|t]),translation只有方向,没有尺度使用三角化获得3维坐标,即可完成vslam系统的初始化有了3D特征点,后续可根据特征跟踪,使用PnP求解CameraPose,无需再使用几何约束IMU的加速度要和世界系的
- 【Smoothly-VSLAM】-3 描述状态不简单:三维空间刚体运动
Howe_xixi
机器人计算机视觉
所有内容请看:博客学习目录_Howe_xixi的博客-CSDN博客https://blog.csdn.net/weixin_44362628/article/details/126020573?spm=1001.2014.3001.5502参考链接:3.描述状态不简单:三维空间刚体运动(yuque.com)参考链接0.《视觉SLAM十四讲》1.旋转的左乘与右乘2.如何通俗地解释欧拉角?之后为何要引
- VSLAM视觉里程计总结
Yangy_Jiaojiao
计算机视觉人工智能opencv
相机模型是理解视觉里程计之前的基础。视觉里程计(VIO)主要分为特征法和直接法。如果说特征点法关注的是像素的位置差,那么,直接法关注的则是像素的颜色差。特征点法通常会把图像抽象成特征点的集合,然后去缩小特征点之间的重投影误差;而直接法则通过warpfunction直接计算像素点在另一张图像上的颜色差,这样就省去了特征提取的步骤。特征点:关键点(位姿)+描述子(向量)直接法:根据像素的亮度信息估计相
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号