- 题集收集
YouthDance
正在努力的更新中dp概率期望poj2096zoj3329zoj3551zoj3582zoj3640poj3071poj3756hdu4035hdu4050CF24D2satpoj2723已做poj3207已做poj3648已做poj3683已做poj2296已做poj2749poj3905已做poj3678已做hdu3622已做hdu2444已做hdu3062已做hdu1824已做hdu4115k
- 师兄的题集
laserss
acm--
dp概率期望poj2096zoj3329zoj3551zoj3582zoj3640poj3071poj3756hdu4035hdu4050CF24D2satpoj2723已做poj3207已做poj3648已做poj3683已做poj2296已做poj2749poj3905已做poj3678已做hdu3622已做hdu2444已做hdu3062已做hdu1824已做hdu4115kmppoj196
- AtCoder Beginner Contest 224题解 A-G
无码萌妹码代码
夜深人静写算法anotheroj1024程序员节
AtCoderBeginnerContest224(A-G)知识点整理:题号知识点备注A无B无C数学DBFS八数码问题变种E动态规划329.矩阵中的最长递增路径变种F概率期望,算贡献,快速幂,逆元G数学,推公式H最小费用最大流签到题、简单题A-Tires判断一个字符串是不是以er或ist结尾。直接做即可#includeusingnamespacestd;intmain(){strings;cin>
- CF1523E - Crypto Lights——概率期望、组合数学、容斥
偶耶XJX
信息竞赛解题Codeforces组合数学
E-CryptoLights题目描述给你nnn个初始关闭的灯,每次随机操作把一个关闭的灯打开,一直操作直到出现两个亮着的灯的距离小于等于kkk。求最后期望亮着多少个灯。数据范围与提示共有ttt组数据;1≤t≤10,1≤k≤n≤1051\let\le10,1\lek\len\le10^51≤t≤10,1≤k≤n≤105。前言D题真做不来,不知道⌈n2⌉\lceil\frac{n}{2}\rceil⌈
- 学习笔记:概率期望
tsqtsqtsq0309
学习笔记
概率&期望样本空间、随机事件定义一个随机现象中可能发生的不能再细分的结果被称为样本点。所有样本点的集合称为样本空间,通常用Ω\OmegaΩ来表示。一个随机事件是样本空间Ω\OmegaΩ的子集,它由若干样本点构成,用大写字母A,B,C,⋯A,B,C,\cdotsA,B,C,⋯表示。对于一个随机现象的结果ω\omegaω和一个随机事件AAA,我们称事件AAA发生了当且仅当ω∈A\omega\inAω∈
- 概率期望dp
_fairyland
dp算法动态规划
Blocks期望dp,从已经满足的点倒着推,首先考虑状态,发现nnn很小,直接状压,然后暴力枚举状态看是否全部覆盖,发现坐标跨度很大,对坐标离散化,依次差分修改,O(n22n)O(n^22^n)O(n22n),然后就可以直接dp了dpi=∑jdpi[(1#definelllonglongconstllmod=998244353;intx1[15],x2[15],y2[15];intsum[50][
- 2020ICPC南京【个人题解EFHKLM】
juruo_c
XCPC题解算法c++图论
目录E-EvilCoordinate(思维、暴力)思路代码F-Fireworks(概率期望、三分)思路代码H-HarmoniousRectangle(思维、暴力)思路代码K-KCo-primePermutation(签到、构造)思路代码L-Let'sPlayCurling(签到)思路代码M-MonsterHunter(树形背包)思路代码E-EvilCoordinate(思维、暴力)思路首先如果炸弹
- K - Kingdom‘s Power 贪心,E-奇环_牛客练习赛106 二分图 鸽笼原理,F-座位_概率期望,G-交换_dp
killer_queen4804
算法c++总结算法图论c++
K-Kingdom'sPower贪心一开始想的是要想路程最小,那么他一定是先去征服size最小的子树是最好的,然后就wa了,正解应该是按照深度来贪心,对于一个节点u的子节点,按照u走完子节点的步数进行排序,先从步数小的走,然后走下一个节点时看看是直接走根节点再派一个军队还是让刚才走的那个军队再来征服这个,去一个最小值即可,题解代码的实现还是挺巧的CCPC2020秦皇岛K题K.Kingdom'sPo
- 贝尔曼方程推导
寧寧NH
强化学习
马尔可夫的动态特性:回报:(两种定义)或(折扣率大于等于0小于等于1,折扣率决定了未来收益的现值)状态价值函数:从状态s开始,智能体按照策略π进行决策所获得回报的概率期望值动作价值函数:动作价值函数与状态价值函数的关系:动作价值函数与马尔可夫的动态特性的关系:因此贝尔曼方程推导为:或(原理一样,只不过我当时没看明白书上的推导,所以按照自己的理解根据回溯图手写了一下,其实手写和书上截图的推导是一样一
- B - Discovering Gold(概率期望dp)
weixin_44040169
期望dp
Youareinacave,alongcave!Thecavecanberepresentedbya1xNgrid.Eachcellofthecavecancontainanyamountofgold.Initiallyyouareinposition1.Noweachturnyouthrowaperfect6sideddice.IfyougetXinthediceafterthrowing,yo
- 中奖概率的谬误
C20130911
数学
中奖概率期望的谬误问题:假设独立事件发生概率为P,那么重复多少次,独立事件期望发生,即期望值为1?回答:这个问题很简单,有点概率论基础的,都知道:E=1/p。即独立事件的概率是50%,那么期望重复两次就能发生,例如抛硬币问题。在生活中,人们总是会想当然的认为期望值达到了,事件就一定会发生。就像抛硬币两次应该就会出现至少一次正面了,潜意识中认为这个概率是很大的,但实际上这个概率有多大呢?1−50%∗
- 【BZOJ3143】游走(HNOI2013)-DP+概率期望+高斯消元
Maxwei_wzj
动态规划-普通DP数学-概率期望算法-高斯消元
测试地址:游走做法:本题需要用到DP+概率期望+高斯消元。首先根据期望可加性,我们知道路径和的期望等于每条边的期望经过次数乘上边权。又根据排序不等式,我们知道给大的期望次数分配小的编号是最优的,那么现在问题就变成求每条边的期望经过次数。我们可以先求出每个点的期望经过次数pipi,然后边(i,j)(i,j)的期望经过次数就是pideg(i)+pjdeg(j)pideg(i)+pjdeg(j),其中d
- 【BZOJ3616】War,KD树+bitset压位
iamxym
思路:一开始想到顺序无关、轮数独立啥的,想用DP来做,但发现怎么定义状态都有后效性,想套容斥发现也没有什么用,后来聪哥提供思路(baochuzhengjie),对于一些概率期望的题目,除DP外还可以考虑每一个元素的贡献沿着这种思路想一下,求解就可以考虑每个阵营的贡献,即阵营i的所有炮塔一轮中都不会受攻击的概率Pi的m次方,累和起来答案就是∑i=1kPmiPi=n−sinsi指能攻击到种类i炮塔的炮
- 数论
luogu_wbling
数论数论
一、错排考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。求错排个数:D(n)=(n-1)[D(n-2)+D(n-1)]详细:错排二、卡特兰数三、期望概率期望可加性:若满足P(a,b)=P(a)*P(b),则有E(a,b)=E(a)+E(b)四、逆元(inv)前言:给定正整数m,若用m除以两个整数a和b所得余数相同,称a和b对模m同余,记
- 概率期望知识点及题目详解
diecimu4798
基础知识期望的线性性质\(E(X+Y)=E(X)+E(Y)\)证明:\(E(X+Y)=\sum\limits_i\sum\limits_jP(X=i\&\&Y=j)(i+j)\)\(=\sum\limits_i\sum\limits_jP(X=i\&\&Y=j)i+\sum\limits_i\sum\limits_jP(X=i\&\&Y=j)j\)\(=\sum\limits_ii\sum\lim
- 【总结】概率与期望
616156
总结数论DP高斯消元数学概率与期望
前言作为NOIP级的知识点,概率与期望算是比较困难的类型了。但其实也不是无法解决的难题。本文主要通过作者本人的刷题经历,对概率期望类题目进行总结。概率51Nod1639绑鞋带:有n根鞋带混在一起,每根鞋带有两个鞋带头。现在重复n次以下操作:随机抽出两个鞋带头,把它们绑在一起。求最终只形成一个环的概率?依次考虑每一步操作,现在已经选出来了一个头,它必须和非它所在的链的另一个头绑在一起,才能得到合法方
- Dice (III) LightOJ - 1248(概率期望+几何分布(n面骰子,问看到所有的面一次的至少所需掷骰子次数的期望)
发型睡姿决定
概率期望&&概率DP
LOJ—1248题意:一个均匀的骰子有n个面投色子,要求最后要把骰子的每一面都看到了,求扔骰子次数的期望。分析:1.几何分布上面我们定义只要E(x)=1/P,P表示第k次成功的概率扔出第一面成功的概率为P=1,E=1,因为第一面肯定没见过。扔出第二面成功的概率为P=(n-1)/n,E=n/(n-1)(因为实验独立,所以有n-1个可以当作第二面)扔出第i面成功的概率为P=(n-i-1)/n,E=n/
- 概率与期望详解!一次精通oi中的概率期望
Tyl18858230607
目录基础概念最大值不超过Y的期望概率为P时期望成功次数基础问题拿球随机游走经典问题期望线性性练习题例题选讲noip2016换教室区间交0-1边树求直径期望球染色区间翻转二位&三维凸包点数期望单选错位KILL后记@(期望与概率)基础概念随机变量:有多种可能的取值的变量万物都可以当做随机变量,包括常数,方便用\(\sum\)统计P(A):事件A发⽣的概率E(X):随机变量X的期望值,\(E(X)=Su
- HMM(Hidden Markov Model)
SunChao3555
ML
目录HMM定义HMM的确定从⽣成式的观点考虑隐马尔科夫模型,我们可以更好地理解隐马尔科夫模型。HMM的参数统一定义:HMM举例HMM的3个基本问题概率计算问题定义:前向概率-后向概率前向算法后向算法前后向关系单个状态的概率:两个状态的联合概率期望学习问题监督学习方法Baum-Welch算法(非监督学习方法)预测问题近似算法Viterbi算法python实现中文分词-------七月算法机器学习笔记
- Everything Is Generated In Equal Probability(HDU - 6595,概率期望)
The___Flash
#概率
一.题目链接:HDU-6595二.题目大意:题目给定一个正整数N.在区间[1,N]中随机等概率地选取一个正整数n,然后随机等概率地生成一个长度为n的排列A,然后调用函数CALCULATE(A).SUBSEQUENCE(A):随机生成一个序列A的子序列.CNTINVERSIONPAIRS(A):返回序列A的逆序对数.CALCULATE(A):计算序列A的逆序数C,再随机选取一个A的子序列B,递归返回
- CF1151F Sonya and Informatics(概率期望,DP,矩阵快速幂)
angzuo8655
明明是水题结果没切掉……降智了……首先令$c$为序列中$0$的个数,那么排序后序列肯定是前面$c$个$0$,后面$n-c$个$1$。那么就能上DP了。(居然卡在这里……)$f[i][j]$表示经过$i$次操作后,前$c$个数中有$j$个$0$的方案数。答案就是$\dfrac{f[k][c]}{\sumf[k][i]}$。这个状态的好处就是可以直接求出以下这些值:前$c$个数中$1$的个数为$c-j
- 概率期望中高斯消元的几种用法
IDnumber4
数论题解总结
前置知识:高斯消元法博主理解浅显,只能膜piao别人的总结戳别人家的题解咳咳……还是简单介绍两句它可以用O(n3)O(n^3)O(n3)的复杂度解出n元方程组表示方法:矩阵tips:一般情况下高斯消元可能出现无解、无穷解的情况,我的做法里面没有判断,由于矩阵对角线上不会出现0。概率与期望:概率:发生的可能性期望:概率的加权平均数(表示对权值的一个预期值)eg.某图中从起点经过i步到达终点的可能性为
- 2020寒假培训期望dp(概率dp)题解
MOGU漠沽
如何提高博客访问量?概率期望dp一般都是逆推。正推的话要计算期望的期望,非常麻烦!一般来说,总有一个末状态是一定会发生,从这个状态开始逆推可以简化许多问题。期望dp和普通的dp的不同处。普通的dp可能纪录的是dp[i]到了i这个状态时的最优解,而期望dp一般纪录dp[i]以i这个状态为起点能得到的最优解。E.DiscoveringGold题意:大富翁地图。丢筛子,每个格子有val,如果最后丢出筛子
- codeforces 概率期望
wa自动机
数学dp
概率dp:1:一般dp[i][j][k]表示这种状态的概率,然后利用填表法或者刷表法转移;2:一般初始状态(末尾状态)只能有一个,末尾状态(初始状态)如果有多个要考虑将所有的概率加(取max)起来;codeforces442B概率+贪心题意:有n个人,每个人可以提出一个问题,提出问题的成功率为a[i],现在要求这n个人总共成功提出一个问题的成功率;思路:假设p1p2p3p20.5时,不选任何人最好
- 动态规划求概率期望和高斯消元求解方程组
livingsu
算法课的project有一道很有意思的题目,是用动态规划求概率期望,其中用到了高斯消元法,特此记录一下。题目:小Z来到一个古墓去寻找宝藏。古墓中有非常多的路口和岔路,有些路口有陷阱,小Z在每次经过路口i的陷阱的时候都要掉A[i]点血,而且陷阱是永久有效的(即小Z每到一次路口i就要掉A[i]点血)。幸运的是,有一些路口没有陷阱。可不幸的是,小Z是个路痴,他完全无法判断他走过哪里,要去哪里;他只能在每
- codeforces 335 E Counting Skyscrapers(概率期望)
Coco_T_
省选概率期望
题目链接题目翻译分析:啊咧,为什么标签都是dp唉?但是前辈都吐槽这道题根本不是dp啊。。。前辈说有一个O(n2h)O(n2h)的dp(只针对已知Alice求Bob),xue微想了一下:f[i][k]f[i][k]表示到第i栋楼,ta的高度为k时Bob计数器的期望枚举与i连接的建筑物j,显然j~i之间不会有楼高于k,概率为:(k−1)xhx,x=i−j−1(k−1)xhx,x=i−j−1(因为Bob
- 概率期望题目合集(1)
weixin_30443895
51Nod1632B君的连通我们可以看出删去$i$条边会有$i+1$个联通块,所以可以得出以下的式子:$ans=\sum_{i=0}^{n-1}(\frac{1}{2})^{n-1}\textrm{C}_{n-1}^{i}(i+1)$因为最后答案要乘上$2^{n-1}$,所以化简一下(倒序相加)可以得到$ans=(n+1)2^{n-2}$#include#include#include#inclu
- [Codeforces335E]Counting Skyscrapers(概率期望+数学证明)
FromATP
Codeforces数学乱搞题竟然需要推式子的概率期望
======这里放传送门======题解这题神死了。。。ATP想把那个在CF上强行加上【DP】这个tag的人吃掉。。。一开始吭哧了半天想了一个O(n2h)的东西根本不能做啊。。实际上这题就是一个推导,然后一个式子就出来了。。还有,Bob这个人P事真TM多。。。。【(╯‵□′)╯︵┻━┻】把CF的官方题解和翻译先链过来。果然还是中文看起来舒爽。。。那ATP这里就把题解上没有说的证明一点一点证一下吧。
- [Codeforces335E]Counting Skyscrapers(概率期望)
Clove_unique
题解概率期望
题目描述传送门题面翻译见:http://cogs.pro/cogs/problem/problem.php?pid=1921题解神题啊…神哭了…就知道Alice和Bob凑在一起肯定不干好事想了一节晚自习+两节课,只yy出了一种不靠谱的O(n2h)的东西…看题解发现不是dp,竟然是一道纯数学题…要特别注意的是这道题的高度和编号是岔劈着的,非常恶心cf官方题解:http://codeforces.co
- ZOJ_3569_Dr. Zomboss's Revenge(概率期望)
light_starlight
ACMZOJ概率和期望
Dr.Zomboss'sRevengeTimeLimit:2SecondsMemoryLimit:65536KBThesedaysMMisinterestedinthefinalstageofPlantsvsZombies,called"Dr.Zomboss'srevenge".Inthisstage,MMisprovidedwithanemptymapwithnrowsandmcolumnsas
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方