矩阵求逆 折射伤害

Description

在一个游戏中有n个英雄,初始时每个英雄受到数值为ai的伤害,每个英雄都有一个技能“折射”,即减少自己受到的伤害,并将这部分伤害分摊给其他人。对于每个折射关系,我们用数对(xi,yi,zi)来表示xi将自己受到伤害去掉zi的比例,将这些伤害转移给yi(xi,yi是整数,zi是实数)。

求出经过反复折射后最后每个英雄受到的实际总伤害。

Input

第一行一个正整数:n,表示有n个英雄,第二行n个整数Ai,依次表示每个英雄受到的初始伤害。第三行一个正整数m,表示有m对折射关系。接下来m行,每行三个数xi,yi,zi,表示xi将自己受到伤害去掉zi的比例,将这些伤害转移给yi。

Output

输出n行,第i行表示第i个英雄最后受到的实际总伤害。保留六位小数。

Sample Input

3

1 0 2

3

1 2 0.3000

1 2 0.2000

2 1 0.5000

Sample Output

0.666667

0.333333

2.000000

Data Constraint

矩阵求逆 折射伤害_第1张图片

考场上的方法太复杂了。。。

记英雄第一波受的伤害的矩阵为A

先不将折射伤害分配给其他人,受到的削弱伤害的比例矩阵为B

第一波伤害后,分配伤害的矩阵为T

则最终每个英雄承受伤害的矩阵S

S=A*B+A*T*B+A*T^2*B+A*T^3*B+......

又知1+x+x^2+x^3+x^4+...=1/(1-x)

所以S=A*(I-T)^(-1)*B

矩阵求逆即可

如何求逆?

对于矩阵A,在右边合并元矩阵I

直接高斯消元

注意要将交换后的行换回来

然后去原来元矩阵I那部分的矩阵

即为A的逆矩阵A^(-1)

 

这方法太麻烦了

 

直接将关系列方程高斯消元解就好了嘛。。。

没事,顺便学了个矩阵求逆,不亏

 

你可能感兴趣的:(数学)