- 三对角线型行列式的求法
Mr-Apple
笔记线性代数矩阵算法
三对角线型行列式摘要典型例题练习题参考答案摘要笔者在复习高等代数行列式这章时,发现三对角行列式问题是行列式计算中经常出现的一类行列式,部分考研院校也曾直接出过三对角行列式的计算,亦或是三对角行列式的变体问题.本文主要介绍了一种通常情况下三对角行列式的解法,即采用特征根法来求解行列式的通项公式.例1:计算nnn阶行列式(ac≠0)(ac\neq0)(ac=0)Dn=∣bc0…000abc…0000
- 高等代数精解【9】
叶绿先锋
基础数学与应用数学线性代数矩阵
文章目录向量空间与矩阵矩阵的行列式矩阵A的秩保持不变方阵的行列式线性无关的条件1.线性组合为零向量的唯一性2.矩阵的秩3.几何解释(对于二维和三维空间)4.行列式(对于方阵)总结矩阵的非零子式基础重要性例子注意事项非奇异矩阵(也称为可逆矩阵或满秩矩阵)定义性质例子结论逆矩阵的计算高斯-约旦消元法Julia代码使用伴随矩阵和行列式的倒数来计算逆矩阵参考文献向量空间与矩阵矩阵的行列式矩阵A的秩保持不变
- 高等代数理论基础9:复系数与实系数多项式
溺于恐
复系数与实系数多项式代数基本定理定理:每个次数的复系数多项式在复数域中有一根等价叙述:每个次数的复系数多项式,在复数域上一定有一个一次因式注:由定理可知复数域上所有次数大于1的多项式全是可约的,即不可约多项式只有一次多项式复系数多项式因式分解定理定理:每个次数的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积复系数多项式具有标准分解式其中是不同的复数,标准分解式说明每个n次复系数多项式恰有n
- 线性变换零化多项式和最小多项式的概念和性质
patrickpdx
矩阵论
摘自邱维声《高等代数(下)》Chapter10.2,Page270摘自邱维声《高等代数(下)》Chapter10.3,Page276辨析摘自TheLinearAlgebraaBeginningGraduateStudentOughttoKnow(SecondEdition)JonathanS.GolanChapter12,Page249最小多项式的唯一性:零化多项式和最小多项式的关系:零化多项式是
- 高等代数8-1 λ-矩阵
GavinLinxs
高等代数线性代数
λ−\lambda-λ−矩阵 如果一个矩阵的元素是一元多项式环F[λ]\mathbbF[\lambda]F[λ]上的元素,那么这个矩阵就称为λ−\lambda-λ−矩阵.也就是A(λ)=(a11(λ)⋯a1n(λ)⋮⋱⋮as1(λ)⋯asn(λ)).\bmA(\lambda)=\begin{pmatrix}a_{11}(\lambda)&\cdots&a_{1n}(\lambda)\\\vdot
- 憨逼的考研日记(一)
星空_59e5
慢慢的,活成了自己最讨厌的样子(序言,本人今年大四毕业,三月份到八月份一直在小城单位工作,工资在平均7000左右。九月份回学校二战,金融跨考数学,目标某985。复习进度,数学分析复习到最后两章节,高等代数基础复习到第六章,共十章。政治英语没复习,还有十四天考试,去年凉,今年凉凉!)武汉的冬天真的有点冷,早上六点多脚蹬了一下墙,墙上留下了一个洞,我自己也醒了,瞄了一眼落地窗,漆黑黑的,等天亮了,在起
- 范畴论系列(一)初识范畴
数学
起因写这个系列起源于自己学习编程语言时遇到的问题,研究编程语言不可避免要与数学打交道,自己大学只学过数学分析和高等代数等数学系一年级课程,PLT(ProgrammingLanguageTheroy)需要的数学基础大致为:抽象代数(AbstractAlgebra)、拓扑(Topology)、范畴(CategoryTheory)等代数知识,在阅读相关PL书籍时,深感自己的无力。我又是一个"死磕"的人,
- 高等代数理论基础61:欧几里得空间
溺于恐
欧几里得空间欧几里得空间定义:设V是实数域R上一线性空间,在V上定义一个二元实函数,称为内积,记作,具有以下性质:1.2.3.4.其中是V中任意向量,k为任意实数,这样的线性空间V称为欧几里得空间注:1.欧几里得空间可以是有限维的,也可以是无限维的2.几何空间中向量的全体构成一个欧几里得空间例:1.线性空间中,对向量,定义内积构成一个欧几里得空间2.在闭区间上的所有实连续函数所成的空间中,对函数定
- Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍
孤舟簔笠翁
Android应用进阶篇android矩阵算法
一,矩阵Matrix的数学原理矩阵的数学原理涉及到矩阵的运算和变换,是高等代数学中的重要概念。在图形变换中,矩阵起到关键作用,通过矩阵的变换可以改变图形的位置、形状和大小。矩阵的运算是数值分析领域的重要问题,对矩阵进行分解和简化可以简化计算过程。对于一些特殊矩阵,如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在MatrixMatrix中,矩阵的数学原理同样适用。Matrix提供了缩放、平移、旋转和
- 常系数微分方程组的V函数构造定理的解释
a03910
笔记
这是王高雄里的常微分方程里的二次型V函数的构造…一节的定理,定正矩阵,这个书里没注意到在哪,不过在高等代数中就是正定矩阵的意思,第二个划线部分矩阵里的微分运算,也是没见过的,看起来很有意思,但是原因呢?之前在证明刘维尔公式的时候有行列式求导运算,现在又有矩阵求导,其实没有特别的理由,就当作是一般的函数乘积求导而已,不过对于矩阵,只需要看作是n^2维向量值函数而已,然后按照数学分析中的多元函数微分即
- 基础数学知识是财务自由的保障
烨子墨
生活中,其实可以用简单的数学符号表示。我所强调的“什么更重要”,其实就是一个不等号“>”。比如:注意力>时间>金钱比如;人>内容>PPT图片发自App除了不等号之外,+-*/就已经足够了,其他多是多余的,让我们慢慢走近化繁为简的未来时代!你不必是一个天才。巴菲特说:“如果成为一个伟大的投资者需要积分或高等代数的知识,那我只能回去送报纸了。”巴菲特认为,现代金融理论对经济学家是有用的,但对于我们其余
- 2018-09-26
yeshan333
体验markdown添加链接我的博客添加图片百度上找的一级引用要判断一个人是否真正聪明,那就要看他能否根本不用动手,而工作却又能完成。二级引用在C++里,想搬起石头砸自己的脚更为困难了。不过一旦你真这么做了,整条腿都得报销!列表的使用一级列表pythonJavac++多级列表数学分析高等代数解析几何插入代码行内代码printf("helloworld");块代码,每行代码前四个空格或一个tabWo
- 做完这些_成为机器学习方面的专家
DARRENANJIAN
FWI思考与总结机器学习人工智能
简单记个帖子,用来记录学习机器学习的路线图1.数学分析,高等代数,概率论这三大件不多说,基础中的基础.2.对于编程工具,b站上500集的python教程---python面向对象编程五部曲(从零到就业).3.对于机器学习的理论板块,推荐b站up主---啥都会一点的研究生,里面有一个吴恩达最新版的教学视频,欢迎学习.接着为了继续学习理论板块,推荐看几本机器学习的书籍,网上资源很多内容应该都差不多,主
- Day26 大学专业怎么选? ——理科《高考》
邱真一
理科:注重理论研究,不太考虑应用实践,非常适合脑子好使、数理化高分的人学习。理科主要分为数理化生,和高中类似,但课业内容会从新手村调成了地狱模式。数学系数学系听起来就是那种高考数学145分的人才会选的系,他们是众人眼中的学霸,是人群里最健硕的大腿。【学习内容】数学系每天都是数学课:高等代数、数学分析、常微分方程、复变函数、泛函分析、拓扑学...随便讲一讲都能三天三夜不带重样的,非常充实。他们的日常
- 高等代数理论基础18:Cramer法则
溺于恐
Cramer法则Cramer法则定理:若线性方程组的系数矩阵的行列式,即系数行列式,则线性方程组有且仅有唯一解,且解可通过系数表为其中是把矩阵A中第j列换成方程组的常数项所成矩阵的行列式,即证明:齐次线性方程组定义:常数项全为零的线性方程组称为齐次线性方程组注:齐次线性方程组总是有解的,就是一个解,称为零解,此外为非零解定理:若齐次线性方程组的系数矩阵的行列式,则它只有零解,若方程组有非零解,则证
- openmp 处理数据竞争的问题 reduction
Eloudy
算法并行运算hpc
类似多线程竞争,需要加锁来保护类似,但实现原理不同,reduction并不会像多线程原子操作那样影响效率,因为它使用了高等代数里的单位元和结合律思想,为每个线程定义一个单位元,开始分段积累运算操作。1,不可避免竞争的示例hello_without_reduction.cpp#include#include#includeintmain(){floatsum=0;omp_set_num_thread
- 高等代数理论基础66:实对称矩阵的标准形
溺于恐
实对称矩阵的标准形对称矩阵的性质引理:设A是实对称矩阵,则A的特征值皆为实数证明:注:对实对称矩阵A,在n维欧氏空间上定义线性变换下的矩阵即A引理:设A是实对称矩阵,,有,或证明:注:引理将实对称矩阵的特性反映到线性变换上对称变换定义:欧氏空间中满足等式的线性变换称为对称变换注:对称变换在标准正交基下的矩阵是实对称矩阵引理:设是线性变换,是-子空间,则也是-子空间证明:引理:设A是实对称矩阵,则中
- 山西大学(双一流)2021–2022 学年第 2 学期-高等代数试卷
小明爱學習
人工智能大数据抽象代数
山西大学2021–2022学年第2学期-高等代数试卷山西大学介绍:山西大学(ShanxiUniversity),位于山西省太原市,是中国办学历史最悠久的高等学府之一,国家“双一流”建设高校,教育部和山西省人民政府共同建设的“部省合建高校”,山西省重点建设大学,是“中西部高校综合实力提升工程”、“中西部高校基础能力建设工程”、教育部基础学科拔尖学生培养计划2.0基地、“111”学科创新引智基地、英才
- 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第七大题解答
dianyachuo4691
七、(本题10分)设$n$阶复方阵$A$的特征多项式为$f(\lambda)$,复系数多项式$g(\lambda)$满足$(f(\lambda),g'(\lambda))=1$.证明:$A$可对角化的充要条件是$g(A)$可对角化.证明先证必要性.设$A$可对角化,即存在非异阵$P$,使得$P^{-1}AP=\Lambda=\mathrm{diag}\{\lambda_1,\lambda_2,\c
- matlab产生过渡矩阵,浅谈向量空间和矩阵
布拉格小鸽子
matlab产生过渡矩阵
前言:和很多考研的研友交流发现很多人对线性代数抑或是高等代数中的向量空间和矩阵的理解不够深入还停留在表面上,这或许与所学专业有关,非数学专业的学生学的课程一般叫做《线性代数》,而我们数学专业的学生学得则是《高等代数》,两门课程前者偏重应用因此省略了很多证明过程,也就省略了很多的来龙去脉,在加上非数学专业的学生数学体系并不完善影响理解各种数学概念,而高等代数是一门抽象性学科这就更加让非数学专业的学生
- 高等代数第3版下 [丘维声 著] 2015年版_全国硕士研究生入学统一考试管理类联考综合能力考试大纲(2021年版)...
weixin_39742392
高等代数第3版下[丘维声著]2015年版
全国硕士研究生入学统一考试管理类专业学位联考综合能力考试大纲(2021年版)Ⅰ.考试性质综合能力考试是为高等院校和科研院所招收管理类专业学位硕士研究生而设置的具有选拨性质的全国联考科目。其目的是科学、公平、有效地测试考生是否具备攻读专业学位所必需的基本素质、一般能力和培养潜能。评价的标准是高等学校本科毕业生所能达到的及格或及格以上水平,以利于各高等学校和科研院所在专业上择优选拔,确保专业学位硕士研
- 《多目标进化优化》笔记
andy.wang0502
机器学习
目前在做多目标优化这块的研究,找了一本郑金华的《多目标进化优化》恶补下基础知识,有需要的可以下载电子版,一起优化优化。在此笔记来督促自己的科研进度,有个输出的过程,也方便和各位同方向的同学们一起交流探讨!多目标优化的基础知识:《高等代数》、《矩阵分析》和《凸优化》等基础数学的内容。主要分为多目标进化优化基础、多目标帕累托最优解集构造方法、多目标进化群体的分布性、多目标进化算法的收敛性、多目标进化算
- 矩阵乘法c语言 2*3,2*3和2*2矩阵乘法公式
沐雲閣主 荻生
矩阵乘法c语言2*3
3*3矩阵与3*2矩阵乘法公式3*3矩阵与3*2矩阵相乘结果:AB=aA+bB+cCaD+bE+cFdA+eB+fCdD+eE+fFgA+hB+iCgD+hE+iFA=abcdefghiB=ADBECF扩展资料:矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。2*3矩阵与2*2矩阵乘积的详细解法两个矩阵相乘,前者的列数应当等于后者的行数所以2*3矩阵显然不能和2*2矩阵相乘而2*2
- 数学专业课程《实变函数论》学习总结
萝卜丝皮尔
统计学数学
我觉得我们学院的老师不是在给我们传授各种数学知识,而是在告诉我们一个道理:你的能量超乎你想象……何出此言?自打入院以来,别人学“高等数学”,我们学“数学分析”;别人学“线性代数”,我们学“高等代数”,然后,解析几何,常微分方程(英文教学),矩阵计算(又称数值线性代数,双语教学),概率论与数理统计(峁诗松老师的教材,老厚一本),数值分析,等等未完待续吧我以为我再也学不会《数学分析》了,直到遇到了《实
- 高等代数 :1 线性方程组的解法
南村少年
高等代数线性代数
1线性方程组的解法1.1解线性方程组的矩阵消元法1、线性方程组:左端为未知量x的一次齐次式,右端是常数。关键词:系数、常数项、n元线性方程组、解集2、线性方程组的初等变换:1)把一个方程的倍数加到另一个方程上;2)互换两个方程位置;3)用一个非零数乘其中一个方程3、关键词:阶梯型方程组、简化阶梯型方程组、增广矩阵、系数矩阵、零矩阵、方阵、m级矩阵(方阵)、矩阵的初等变换4、阶梯型矩阵:1)零行在下
- 数学建模|极其不愿意上的一门课
曼珠沙华薇薇
大一,别人学高数,我们学数学分析;别人学线性代数,我们学高等代数!反正我们学的都是别人不知道的数学!大二,我们学离散数学,运筹学,概率论。大三一学期,我们学,常微分方程!二学期,我们学数学建模!在别人早已告别数学的时候,我们依然在学这些砸凑的数学!枯燥,无聊!明明很简单的数学问题,非要建立一个模型来求解!真的烦!烦自己为什么要选个数学专业!现在才会这么痛苦,这么无助的学这自己不喜欢的课!好想毕业啊
- 数据结构和算法--Java实现矩阵
挨踢SuperMan
数据结构和算法数据结构和算法矩阵java
相信朋友们对矩阵应该不陌生,它贯穿了几乎所有计算机应用数学的所有课程。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。下面我们简单复习下。什么是矩阵1.矩阵定义在数学中,矩阵(Matrix)是一个按照长方阵列排列的实数或复数的集合,最早来自于方程组的系数及常数所构成的方阵。由m×n个数aij排成的m行n列的数表称为m行n列的矩阵,简称m×n矩阵。记作:图1矩阵这m×n个数称为矩阵A
- 3.3 求高等代数问题
哥是八路
3.3.1解方程解一般的一元一次和一元二次方程解方程,和,我们首先需要把方程化成一般形式,然后带入solve()。>>>fromsympyimport*>>>x=Symbol('x')>>>solve(x-5-7)[12]>>>solve(x**2-5*x-7)[5/2+sqrt(53)/2,-sqrt(53)/2+5/2]>>>pprint(solve(x**2+x+1))#求解带复根的一元二次
- 北京大学计算机801考试大纲,2019年中国科学院大学801高等代数考研初试大纲
茸茸君
北京大学计算机801考试大纲
中国科学院大学硕士研究生入学考试《高等代数》考试大纲本《高等代数》考试大纲适用于中国科学院大学数学和系统科学等学科各专业硕士研究生入学考试。高等代数是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。它的主要内容包括多项式、行列式和线性方程组、矩阵及其标准形、特征值和特征向量、线性变换和矩阵范数。要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分析解决问题能力。一
- 高斯消元法的MATLAB实现
Li_Y_P
线性代数矩阵numpy
这是一个基于最大主元的高斯消元法的matlab实现,代码中并未考虑对方程组是否有解以及解的唯一性的判断,具体原理可参考高等代数或《MATLAB数学建模》。functions=GuassSolution(A,b)%获取未知数的个数n=length(A(:,1));%寻找每一列的最大主元所在的行数fork=1:n-1[a,t]=max(abs(A(k:n,k)));p=t+k-1;ifa==0err
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不