- 线性判别分析 (Linear Discriminant Analysis, LDA)
ALGORITHM LOL
人工智能机器学习算法
线性判别分析(LinearDiscriminantAnalysis,LDA)通俗易懂算法线性判别分析(LinearDiscriminantAnalysis,LDA)是一种用于分类和降维的技术。其主要目的是找到一个线性变换,将数据投影到一个低维空间,使得在这个新空间中,不同类别的数据能够更好地分离。线性判别分析的核心思想LDA的基本思路是最大化类间方差(between-classvariance)与
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 机器学习(西瓜书)学习笔记导览
盛寒
机器学习西瓜书学习机器学习人工智能
本篇文章会持续更新直到更新完毕,关注博主不迷路~(如果没有超链接,表示还没有更新到)第一章绪论1.1引言1.2基本术语1.3假设空间1.4归纳偏好第二章模型评估与选择2.1经验误差与过拟合2.2评估方法2.3性能度量2.4比较检验2.5偏差与方差第三章线性模型3.1基本形式3.2线性回归3.3对数几率回归3.4线性判别分析3.5多分类学习3.6类别不平衡问题第四章决策树4.1基本流程4.2划分选择
- Datawhale X 李宏毅苹果书 AI夏令营Day02
xuanEpiphany29
人工智能
一、打卡Datawhale进入打卡链接选择相对应的任务打卡就可以了二、学习1、线性模型依旧是b站上老师的授课视频,我找到知乎上解释很好的文章,分享一下机器学习(一)线性模型————理论篇线性回归模型、对数几率模型、线性判别分析模型、多分类学习模型-知乎(zhihu.com)(1)、模型概述线性模型是机器学习中一种非常基础且重要的模型,广泛应用于分类和回归任务。线性模型的基本思想是通过一个线性方程来
- Python概率建模算法和图示
亚图跨际
数学机器学习Pythonpython算法概率建模统计
要点Python朴素贝叶斯分类器解释概率学习示例Python概率论,衡量一个或多个变量相互依赖性,从数据中学习概率模型参数,贝叶斯决策论,信息论,线性代数和优化Python线性判别分析分类模型,逻辑回归,线性回归,广义线性模型Python结构化数据,图像和序列神经网络朴素贝叶斯分类器示例概率学习在机器学习的广阔领域中,概率学习开辟了自己独特的空间。在统计和概率的驱动下,概率学习侧重于对数据中存在的
- 数据处理方法—— 7 种数据降维操作 !!
JOYCE_Leo16
Python数据降维python数据处理
文章目录数据降维1.主成分分析(PCA)2.线性判别分析(LDA)3.t-分布随机邻域嵌入(t-SNE)4.局部线性嵌入(LLE)5.多维缩放(MDS)6.奇异值分解(SVD)7.自动编码器(Autoencoders)总结数据降维数据降维是一种将高维数据转换为低纬数据的技术,同时尽量保留原始数据的重要信息。这对于处理大规模数据集非常有用,因为它有助于减少计算资源的需要,并提高算法的效率。以下是一些
- NLP自然语言处理实战(三):词频背后的语义--5.距离和相似度&反馈及改进
Nobitaxi
NLP自然语言处理实战学习自然语言处理机器学习人工智能
目录1.距离和相似度2.反馈及改进线性判别分析1.距离和相似度我们可以使用相似度评分(或距离),根据两篇文档的表达向量间的相似度(或距离)来判断文档间有多相似。LSA能够保持较大的距离,但它并不能总保持较小的距离(文档之间关系的精细结构)。LSA底层的SVD算法的重点是使新主题向量空间中所有文档之间的方差最大化。特征向量(词向量、主题向量、文档上下文向量等)之间的距离驱动着NLP流水线或任何机器学
- 机器学习本科课程 实验1 线性模型
11egativ1ty
机器学习本科课程机器学习人工智能
第三章线性模型3.1一元线性回归3.2多元线性回归3.3对数几率回归,线性判别分析(二选一)3.4类别不均衡3.1一元线性回归——Kaggle房价预测使用Kaggle房价预测数据集:打乱数据顺序,取前70%的数据作为训练集,后30%的数据作为测试集分别以LotArea,BsmtUnfSF,GarageArea三种特征作为模型的输入,SalePrice作为模型的输出在训练集上,使用最小二乘法求解模型
- 西瓜书学习笔记——核化线性降维(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍核化线性降维是一种使用核方法(KernelMethods)来进行降维的技术。在传统的线性降维方法中,例如主成分分析(PCA)和线性判别分析(LDA),数据被映射到一个低维线性子空间中。而核化线性降维则通过使用核技巧,将数据映射到一个非线性的低维空间中。核技巧的核心思想是通过一个非线性映射将原始数据转换到一个高维的特征空间,然后在该特征空间中应用线性降维方法。这种映射
- 白铁时代 —— (监督学习)原理推导
人生简洁之道
2020年-面试笔记人工智能
来自李航《统计学习方法》文章目录-1指标相似度0概论1优化类1.1朴素贝叶斯1.2k近邻-kNN1.3线性判别分析二分类LDA多分类LDA流程LDA和PCA的区别和联系1.4逻辑回归模型&最大熵模型逻辑回归最大熵模型最优化1.5感知机&SVM感知机SVM线性可分SVM线性不可分SVM对偶优化问题&非线性SVM序列最小优化算法SMO1.7概率图模型EM算法EM算法的导出和流程应用举例:高斯混合模型(
- 机器学习:线性判别分析LDA(Python)
捕捉一只Diu
机器学习算法线性回归笔记python
一、线性判别分析的定义二、线性判别分析——二分类模型lda2classify.pyimportnumpyasnpclassLDABinaryClassifier:"""线性判别分析二分类模型"""def__init__(self):self.mu=None#各类别均值向量self.Sw_i=None#各类内散度矩阵self.Sw=None#类内散度矩阵(within-classscattermat
- Fisher线性判别分析
Sanchez·J
美赛算法机器学习人工智能
Fisher线性判别分析原理LDA(LinearDiscriminantAnalysis)是一种经典的线性判别方法,又称Fisher判别分析。该方法思想比较简单:给定训练集样例,设法将样例投影到一维的直线上,使得同类样例的投影点尽可能接近和密集,异类投影点尽可能远离。Fisher线性判别分析主要包括两个目标:最大化类间方差(MaximizeBetween-ClassVariance):通过找到一个
- 数学建模学习笔记||绪论
展信佳 :)
数学建模
目录比赛时间比赛结果公布时间题目分类奖项设置数学建模论文内容比赛流程建模过程数据处理插值拟合小波分析,聚类分析(高斯混合聚类,K-均值聚类)主成分分析,线性判别分析,保留局部投影等均值,方差分析,协方差分析等统计方法关联与分析灰色关联分析:样本点个数较少Preson相关:样本点个数较多Copula相关:比较难,金融数学,概率密度分类与判别距离聚类关联性聚类层次聚类密度聚类贝叶斯判别(统计判别方法)
- 2025山大软件学院机器学习805 2024持续押中
sdu_study
机器学习人工智能
805-机器学习一、考试基本要求要求考生系统地理解机器学习的基本概念,理解和掌握各种机器学习的理论和方法,并具有综合运用所学知识进行分析问题和解决问题的能力。二、考试范围和主要内容1.绪论机器学习的基本概念。2.模型评估与选择经验误差与过拟合、评估方法、性能度量、比较检验、偏差与方差等。3.线性模型线性回归、对数几率回归、线性判别分析、多分类学习、类别不平衡问题、基于梯度的优化方法等。4.决策树决
- 机器学习降维技术全面对比评析
冷冻工厂
机器学习
简介在机器学习领域,处理高维数据带来了与计算效率、模型复杂性和过度拟合相关的挑战。降维技术提供了一种解决方案,将数据转换为低维表示,同时保留基本信息。本文旨在比较和对比一些突出的降维技术,涵盖线性和非线性方法。线性技术主成分分析(PCA)线性投影:PCA执行线性投影以捕获数据中的最大方差。计算效率:高效且广泛使用,但假设线性关系。线性判别分析(LDA)有监督的降维:LDA结合了类别信息来找到最好地
- 线性判别分析LDA((公式推导+举例应用))
Nie同学
机器学习机器学习
文章目录引言模型表达式拉格朗日乘子法阈值分类器结论实验分析引言线性判别分析(LinearDiscriminantAnalysis,简称LDA)是一种经典的监督学习算法,其主要目标是通过在降维的同时最大化类别之间的差异,为分类问题提供有效的数据表征。LDA不同于一些无监督降维方法,如主成分分析(PCA),它充分利用了类别信息,通过寻找最佳投影方向,使得不同类别的样本在降维后的空间中有最大的类间距离,
- 清风数学建模笔记-多分类-fisher线性判别分析
别被算法PUA
数学建模笔记分类
内容:Fisher线性判别分析一.介绍:1.给定的训练姐,设法投影到一维的直线上,使得同类样例的投影点尽可能接近和密集,异类投影点尽可能远离。2.如何同类尽可能接近:方差越小3.如何异类尽可能远离:计算距离大二.SPSS进行线性判别分析1.分析-分类-判别式分析结果:
- 机器学习之特征工程-降维
城市中迷途小书童
当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。但不要盲目降维,当你在原数据上跑到了一个比较好的结果,又嫌它太慢的时候才进行降维,不然降了半天白降了。常见的降维方法有主成分分析法(PCA)和线性判别分析(LDA),线性判别分析本身也是一个分类模型。PCA和LDA有很多的相似点,其本质是要将原始的样本映射到维度更低的
- 数据降维方法介绍(六)
科技小白不能再白了
第三种方法:线性鉴别分析方法(LDA)姓名:何源学号:21011210073学院:通信工程学院转载:机器学习(30)之线性判别分析(LDA)原理详解【嵌牛导读】线性鉴别分析方法介绍【嵌牛鼻子】线性鉴别分析(LDA)【嵌牛提问】线性鉴别分析方法如何降维以及原理是什么?【嵌牛正文】LDA算法思想LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的。LDA的思想可以用一句话概括,就
- 机器学习笔记 - 线性判别分析(LDA)的原理和应用
坐望云起
深度学习从入门到精通人工智能机器学习LDA线性判别分析
一、LDA简述线性判别分析(LDA)是监督机器学习中用于解决多类分类问题的一种方法。LDA通过数据降维来分离具有多个特征的多个类。这项技术在数据科学中很重要,因为它有助于优化机器学习模型。线性判别分析,也称为正态判别分析(NDA)或判别函数分析(DFA),遵循生成模型框架。LDA算法对每个类别的数据分布进行建模,并使用贝叶斯定理对新数据点进行分类。LDA算法通过使用贝叶斯计算输入数据集是否属于特定
- LDA(线性判别分析)
不做梵高417
人工智能机器学习
#自己来定义列名feature_dict={i:labelfori,labelinzip(range(4),('sepallengthincm','sepalwidthincm','petallengthincm','petalwidthincm',))}label_dict={i:labelfori,labelinzip(range(1,4),('Setosa','Versicolor','Vi
- 分类模型
Cr不是铬
青少年编程c++
分类模型二分类模型对于二分类模型,介绍逻辑回归(logisticregression)和Fisher线性判别分析两种分类算法;对于多分类模型,将简单介绍Spss中的多分类线性判别分析和多分类逻辑回归的操作步骤水果分类例子这个实际上就是一个二分类问题,通过属性推断类别。逻辑回归logisticregression注意:对于因变量为分类变量的情况,我们可以使用逻辑回归进行处理。把y看成事件发生的概率,
- lda 协方差矩阵_线性判别分析LDA详解
weixin_39917211
lda协方差矩阵
1LinearDiscriminantAnalysis相较于FLD(FisherLinearDecriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等。虽然这些在实际中不一定满足,但是LDA被证明是非常有效的降维方法,其线性模型对于噪音的鲁棒性效果比较好,不容易过拟合。2二分类问题原理小结:对于二分类LDA问题,简单点来说,是将带有类别标签的高维样本投影到一个向量w(一维
- 【机器学习】线性判别分析
十年一梦实验室
机器学习人工智能
一、原理对于LDA如何找到最佳投影线性变换矩阵LDA(LinearDiscriminantAnalysis)和PCA(PrincipalComponentAnalysis)区别二、示例代码2.1自定义实现lda算法对iris数据集进行降维importnumpyasnpfromsklearn.datasetsimportload_irisimportmatplotlib.pyplotaspltdef
- 零LDA(Linear Discriminant Analysis)详解
h52013141
python算法机器学习
零LDA(LinearDiscriminantAnalysis)详解零LDA是一种特殊的线性判别分析方法,用于处理具有高维特征但样本数量较少的情况。在这种情况下,传统的LDA由于“小样本问题”而变得不稳定,零LDA提供了一种解决方案。零LDA的核心概念1.小样本问题在高维数据中,当特征数量远大于样本数量时,类内散度矩阵SWS_WSW变得奇异(即不可逆)。这是因为在高维空间中,数据点往往是稀疏的,导
- 线性判别分析(LDA)原理详解及实现
h52013141
python机器学习算法
文章目录线性判别分析(LDA)的实现步骤LDA的基本步骤数学公式类内散度矩阵:示例计算类内散度矩阵为什么用外积代码类间散度矩阵:示例计算类间散度矩阵为什么用外积为什么用样本加权代码矩阵SW−1SBS_W^{-1}S_BSW−1SBSW−1SBS_W^{-1}S_BSW−1SB的含义特征值和特征向量为什么要求特征值和特征向量代码LDA(线性判别分析)算法的Python实现详解算法步骤和代码解释1.计
- 预测模型的选择
weixin_56938151
机器学习python人工智能
预测模型通常为回归任务,但是也有一些是以标签类别为主的分类任务,分类任务常用的模型有逻辑回归、线性判别分析、knn近邻分类算法、朴素贝叶斯、决策树、支持向量机,我们有时并不知道哪个模型是最好,所以要进行比较。#导包importnumpyasnpimportpandasaspdfrompandas.plottingimportscatter_matriximportmatplotlib.pyplot
- 吃瓜学习笔记2:第三章线性回归&对数几率回归&线性判别分析
曼曼668
线性回归理解:线性回归就是希望通过数据属性能够预测未来的函数。比如说拥有了购房数量、地段来预测未来的房价。那属性一般用x表示,预测的属性用y表示,y=wx+b,其中w是每个属性的权重,b是偏置,也就是可以修正数据的误差。一般我们的数据集肯定是特别大,属性特别多,为了计算方便,故用矩阵来计算。也叫多元线性回归有了函数,自然也要找到损失函数,在这里,我们尝试均方差作为损失函数损失函数我们的目的是要求出
- 常见机器学习算法简述
zerowl
kNN(k近邻):给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本。在分类中,通过投票法选择这k个样本中出现最多的类别作为预测结果。在回归任务中,通过计算这k个样本的实际值的平均值作为预测结果。LDA(线性判别分析):核心:向最大化类间差异、最小化类内差异的方向线性投影,是有监督的线性降维算法,确保样本向量线性映射到低维空间后,同类样本的差异尽可能小,不同类样本间的差异尽可能大。
- 机器学习经典方法思想
ZJH'blog
机器学习算法
本文附带问题以及答案,and总结,在每个章节对应的末尾目录1绪论2模型评估和选择留出法(ps:留一法是只留一个验证)交叉验证法(k折交叉验证)(10折交叉验证)自助法调参和最终模型性能度量查准率、查全率P-R曲线和平衡点F1ROC曲线和AUC面积、Lrank排序损失代价敏感曲线(代价曲线)问题和总结3线性模型线性回归对数几率回归:对数几率函数Sigmoid线性判别分析LDA多分类学习类别不平衡问题
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l