箱型图:又称为盒须图、盒式图、盒状图或箱线图,是一种用作显示一组数据分散情况资料的统计图
包含一组数据的:最大值、最小值、中位数、上四分位数(Q3)、下四分位数(Q1)、异常值
① 中位数 → 一组数据平均分成两份,中间的数
② 上四分位数Q1 → 是将序列平均分成四份,计算(n+1)/4与(n-1)/4两种,一般使用(n+1)/4
③ 下四分位数Q3 → 是将序列平均分成四份,计算(1+n)/4*3=6.75
④ 内限 → T形的盒须就是内限,最大值区间Q3+1.5IQR,最小值区间Q1-1.5IQR (IQR=Q3-Q1)
⑤ 外限 → T形的盒须就是内限,最大值区间Q3+3IQR,最小值区间Q1-3IQR (IQR=Q3-Q1)
⑥ 异常值 → 内限之外 - 中度异常,外限之外 - 极度异常
plt.plot.box(),plt.boxplot()
fig,axes = plt.subplots(2,1,figsize=(10,6))
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
color = dict(boxes='DarkGreen', whiskers='DarkOrange', medians='DarkBlue', caps='Gray')
# 箱型图着色
# boxes → 箱线
# whiskers → 分位数与error bar横线之间竖线的颜色
# medians → 中位数线颜色
# caps → error bar横线颜色
df.plot.box(ylim=[0,1.2],
grid = True,
color = color,
ax = axes[0])
# color:样式填充
df.plot.box(vert=False,
positions=[1, 4, 5, 6, 8],
ax = axes[1],
grid = True,
color = color)
# vert:是否垂直,默认True
# position:箱型图占位
# pltboxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None,
# usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None,
# labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_xticks=True, autorange=False,
# zorder=None, hold=None, data=None)
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
plt.figure(figsize=(10,4))
# 创建图表、数据
f = df.boxplot(sym = 'o', # 异常点形状,参考marker
vert = True, # 是否垂直
whis = 1.5, # IQR,默认1.5,也可以设置区间比如[5,95],代表强制上下边缘为数据95%和5%位置
patch_artist = True, # 上下四分位框内是否填充,True为填充
meanline = False,showmeans=True, # 是否有均值线及其形状
showbox = True, # 是否显示箱线
showcaps = True, # 是否显示边缘线
showfliers = True, # 是否显示异常值
notch = False, # 中间箱体是否缺口
return_type='dict' # 返回类型为字典
)
plt.title('boxplot')
print(f)
for box in f['boxes']:
box.set( color='b', linewidth=1) # 箱体边框颜色
box.set( facecolor = 'b' ,alpha=0.5) # 箱体内部填充颜色
for whisker in f['whiskers']:
whisker.set(color='k', linewidth=0.5,linestyle='-')
for cap in f['caps']:
cap.set(color='gray', linewidth=2)
for median in f['medians']:
median.set(color='DarkBlue', linewidth=2)
for flier in f['fliers']:
flier.set(marker='o', color='y', alpha=0.5)
# boxes, 箱线
# medians, 中位值的横线,
# whiskers, 从box到error bar之间的竖线.
# fliers, 异常值
# caps, error bar横线
# means, 均值的横线
----------------------------------------------------------------------
{'caps': [<matplotlib.lines.Line2D object at 0x0000000010042CF8>, <matplotlib.lines.Line2D object at 0x0000000010047BE0>, <matplotlib.lines.Line2D object at 0x0000000010057C88>, <matplotlib.lines.Line2D object at 0x000000001005DB70>, <matplotlib.lines.Line2D object at 0x000000001006EC18>, <matplotlib.lines.Line2D object at 0x0000000010074B00>, <matplotlib.lines.Line2D object at 0x0000000010085BA8>, <matplotlib.lines.Line2D object at 0x000000001008BA90>, <matplotlib.lines.Line2D object at 0x00000000104896D8>, <matplotlib.lines.Line2D object at 0x00000000104998D0>], 'whiskers': [<matplotlib.lines.Line2D object at 0x0000000010042198>, <matplotlib.lines.Line2D object at 0x0000000010042B70>, <matplotlib.lines.Line2D object at 0x0000000010057208>, <matplotlib.lines.Line2D object at 0x0000000010057B00>, <matplotlib.lines.Line2D object at 0x000000001006E198>, <matplotlib.lines.Line2D object at 0x000000001006EA90>, <matplotlib.lines.Line2D object at 0x0000000010085128>, <matplotlib.lines.Line2D object at 0x0000000010085A20>, <matplotlib.lines.Line2D object at 0x000000001009B0B8>, <matplotlib.lines.Line2D object at 0x000000001009B9B0>], 'medians': [<matplotlib.lines.Line2D object at 0x0000000010047D68>, <matplotlib.lines.Line2D object at 0x000000001005DCF8>, <matplotlib.lines.Line2D object at 0x0000000010074C88>, <matplotlib.lines.Line2D object at 0x000000001008BC18>, <matplotlib.lines.Line2D object at 0x0000000010497828>], 'fliers': [<matplotlib.lines.Line2D object at 0x000000001004CD30>, <matplotlib.lines.Line2D object at 0x0000000010062CC0>, <matplotlib.lines.Line2D object at 0x000000001007BC50>, <matplotlib.lines.Line2D object at 0x0000000010090BE0>, <matplotlib.lines.Line2D object at 0x00000000100A37B8>], 'means': [<matplotlib.lines.Line2D object at 0x000000001004C5C0>, <matplotlib.lines.Line2D object at 0x0000000010062550>, <matplotlib.lines.Line2D object at 0x000000001007B4E0>, <matplotlib.lines.Line2D object at 0x0000000010090470>, <matplotlib.lines.Line2D object at 0x00000000102CFC18>], 'boxes': [<matplotlib.patches.PathPatch object at 0x00000000104BAB00>, <matplotlib.patches.PathPatch object at 0x0000000010051C50>, <matplotlib.patches.PathPatch object at 0x0000000010069B00>, <matplotlib.patches.PathPatch object at 0x000000001007EA90>, <matplotlib.patches.PathPatch object at 0x0000000010096B00>]}
# 分组汇总
df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'] )
df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B'])
print(df.head())
df.boxplot(by = 'X')
df.boxplot(column=['Col1','Col2'], by=['X','Y'])
# columns:按照数据的列分子图
# by:按照列分组做箱型图
------------------------------------------------------------------------
Col1 Col2 X Y
0 0.884439 0.801121 A A
1 0.802741 0.390957 A B
2 0.139452 0.805676 A A
3 0.030047 0.571676 A B
4 0.654272 0.733307 A A