单目初始化的类
Initializer.h
/**
* This file is part of ORB-SLAM2.
*
* Copyright (C) 2014-2016 Raúl Mur-Artal (University of Zaragoza)
* For more information see
*
* ORB-SLAM2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ORB-SLAM2. If not, see .
*/
#ifndef INITIALIZER_H
#define INITIALIZER_H
#include
#include "Frame.h"
namespace ORB_SLAM2
{
// THIS IS THE INITIALIZER FOR MONOCULAR SLAM. NOT USED IN THE STEREO OR RGBD CASE.
//单目初始化器
class Initializer
{
typedef pair<int,int> Match;
public:
// Fix the reference frame
Initializer(const Frame &ReferenceFrame, float sigma = 1.0, int iterations = 200);
// Computes in parallel a fundamental matrix and a homography
// Selects a model and tries to recover the motion and the structure from motion
bool Initialize(const Frame &CurrentFrame, const vector<int> &vMatches12,
cv::Mat &R21, cv::Mat &t21, vector<cv::Point3f> &vP3D, vector<bool> &vbTriangulated);
private:
void FindHomography(vector<bool> &vbMatchesInliers, float &score, cv::Mat &H21);
void FindFundamental(vector<bool> &vbInliers, float &score, cv::Mat &F21);
cv::Mat ComputeH21(const vector<cv::Point2f> &vP1, const vector<cv::Point2f> &vP2);
cv::Mat ComputeF21(const vector<cv::Point2f> &vP1, const vector<cv::Point2f> &vP2);
float CheckHomography(const cv::Mat &H21, const cv::Mat &H12, vector<bool> &vbMatchesInliers, float sigma);
float CheckFundamental(const cv::Mat &F21, vector<bool> &vbMatchesInliers, float sigma);
bool ReconstructF(vector<bool> &vbMatchesInliers, cv::Mat &F21, cv::Mat &K,
cv::Mat &R21, cv::Mat &t21, vector<cv::Point3f> &vP3D, vector<bool> &vbTriangulated, float minParallax, int minTriangulated);
bool ReconstructH(vector<bool> &vbMatchesInliers, cv::Mat &H21, cv::Mat &K,
cv::Mat &R21, cv::Mat &t21, vector<cv::Point3f> &vP3D, vector<bool> &vbTriangulated, float minParallax, int minTriangulated);
void Triangulate(const cv::KeyPoint &kp1, const cv::KeyPoint &kp2, const cv::Mat &P1, const cv::Mat &P2, cv::Mat &x3D);
void Normalize(const vector<cv::KeyPoint> &vKeys, vector<cv::Point2f> &vNormalizedPoints, cv::Mat &T);
int CheckRT(const cv::Mat &R, const cv::Mat &t, const vector<cv::KeyPoint> &vKeys1, const vector<cv::KeyPoint> &vKeys2,
const vector<Match> &vMatches12, vector<bool> &vbInliers,
const cv::Mat &K, vector<cv::Point3f> &vP3D, float th2, vector<bool> &vbGood, float ¶llax);
void DecomposeE(const cv::Mat &E, cv::Mat &R1, cv::Mat &R2, cv::Mat &t);
// Keypoints from Reference Frame (Frame 1)
vector<cv::KeyPoint> mvKeys1;
// Keypoints from Current Frame (Frame 2)
vector<cv::KeyPoint> mvKeys2;
// Current Matches from Reference to Current
vector<Match> mvMatches12;
vector<bool> mvbMatched1;
// Calibration
cv::Mat mK;
// Standard Deviation and Variance
float mSigma, mSigma2;
// Ransac max iterations
int mMaxIterations;
// Ransac sets
vector<vector<size_t> > mvSets;
};
} //namespace ORB_SLAM
#endif // INITIALIZER_H
Initializer.cc
/**
* This file is part of ORB-SLAM2.
*
* Copyright (C) 2014-2016 Raúl Mur-Artal (University of Zaragoza)
* For more information see
*
* ORB-SLAM2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ORB-SLAM2. If not, see .
*/
#include "Initializer.h"
#include "Thirdparty/DBoW2/DUtils/Random.h"
#include "Optimizer.h"
#include "ORBmatcher.h"
#include
namespace ORB_SLAM2
{
Initializer::Initializer(const Frame &ReferenceFrame, float sigma, int iterations)
{
mK = ReferenceFrame.mK.clone();
mvKeys1 = ReferenceFrame.mvKeysUn;
mSigma = sigma;
mSigma2 = sigma*sigma;
mMaxIterations = iterations;
}
/**
* 初始化
* 1.RANSAC随机选择200组数据,每组数据8个特征点
* 2.分别计算H和F矩阵,选择效果最好的那个
*/
bool Initializer::Initialize(const Frame &CurrentFrame, const vector<int> &vMatches12, cv::Mat &R21, cv::Mat &t21,
vector<cv::Point3f> &vP3D, vector<bool> &vbTriangulated)
{
// Fill structures with current keypoints and matches with reference frame
// Reference Frame: 1, Current Frame: 2
mvKeys2 = CurrentFrame.mvKeysUn;
mvMatches12.clear();
mvMatches12.reserve(mvKeys2.size());
mvbMatched1.resize(mvKeys1.size());
//将vMatches12中的特征点匹配关系填充到mvMatches12中
for(size_t i=0, iend=vMatches12.size();i<iend; i++)
{
if(vMatches12[i]>=0)
{
//pair [ref frame keypoint id, current frame keypoint id]
mvMatches12.push_back(make_pair(i,vMatches12[i]));
mvbMatched1[i]=true;
}
else /// -1 means not matched
mvbMatched1[i]=false;
}
/// matched key points size
///匹配的特征点的数目
const int N = mvMatches12.size();
// Indices for minimum set selection
vector<size_t> vAllIndices;
vAllIndices.reserve(N);
vector<size_t> vAvailableIndices;
//索引值
for(int i=0; i<N; i++)
{
vAllIndices.push_back(i);
}
// Generate sets of 8 points for each RANSAC iteration
///200 * vector
//为每次的RANSAC迭代生成8个点
mvSets = vector< vector<size_t> >(mMaxIterations,vector<size_t>(8,0));
DUtils::Random::SeedRandOnce(0);
/// 200 times iterations,生成200次迭代数据
for(int it=0; it<mMaxIterations; it++)
{
vAvailableIndices = vAllIndices;
// Select a minimum set
for(size_t j=0; j<8; j++)
{
/// get a random int number between [0, avalible_index]
int randi = DUtils::Random::RandomInt(0,vAvailableIndices.size()-1);
/// get key point index according random int number
int idx = vAvailableIndices[randi];
//填充第it次迭代的第j个数据
mvSets[it][j] = idx;
/// move the last element to replace randi index, and delete the last element
vAvailableIndices[randi] = vAvailableIndices.back();
vAvailableIndices.pop_back();
}
}
// Launch threads to compute in parallel a fundamental matrix and a homography
//启动两个线程同步分别计算H和F矩阵
vector<bool> vbMatchesInliersH, vbMatchesInliersF;
float SH, SF;
cv::Mat H, F;
thread threadH(&Initializer::FindHomography,this,ref(vbMatchesInliersH), ref(SH), ref(H));
thread threadF(&Initializer::FindFundamental,this,ref(vbMatchesInliersF), ref(SF), ref(F));
// Wait until both threads have finished
threadH.join();
threadF.join();
// Compute ratio of scores
float RH = SH/(SH+SF);
// Try to reconstruct from homography or fundamental depending on the ratio (0.40-0.45)
if(RH>0.40)
return ReconstructH(vbMatchesInliersH,H,mK,R21,t21,vP3D,vbTriangulated,1.0,50);
else //if(pF_HF>0.6)
return ReconstructF(vbMatchesInliersF,F,mK,R21,t21,vP3D,vbTriangulated,1.0,50);
return false;
}
/**
* 找到最佳的Homography矩阵
*/
void Initializer::FindHomography(vector<bool> &vbMatchesInliers, float &score, cv::Mat &H21)
{
// Number of putative matches
const int N = mvMatches12.size();
// Normalize coordinates
//归一化坐标
vector<cv::Point2f> vPn1, vPn2;
cv::Mat T1, T2;
Normalize(mvKeys1,vPn1, T1);
Normalize(mvKeys2,vPn2, T2);
cv::Mat T2inv = T2.inv();
// Best Results variables
score = 0.0;
vbMatchesInliers = vector<bool>(N,false);
// Iteration variables
vector<cv::Point2f> vPn1i(8);
vector<cv::Point2f> vPn2i(8);
cv::Mat H21i, H12i;
vector<bool> vbCurrentInliers(N,false);
float currentScore;
// Perform all RANSAC iterations and save the solution with highest score
//执行迭代,保存得分最高的解决方案
for(int it=0; it<mMaxIterations; it++)
{
// Select a minimum set
for(size_t j=0; j<8; j++)
{
int idx = mvSets[it][j];
/// key point in frame 1
vPn1i[j] = vPn1[mvMatches12[idx].first];
/// key point in frame 2
vPn2i[j] = vPn2[mvMatches12[idx].second];
}
/**
* 这里计算出来的H矩阵是相对于归一化之后的特征点的,我们需要的是归一化之前的H21矩阵
* 设P1,P2分别为F1和F2两帧上的匹配的特征点(未归一化),其通过Hn矩阵的映射关系为
* 有1.T2*P2 = Hn*T1*P1
* 2. H21*P1=P2 ,
* 因此T2*H21*P1=Hn* T1*P1
* ==>H21 = T2^-1*Hn*T1
* */
cv::Mat Hn = ComputeH21(vPn1i,vPn2i);
H21i = T2inv*Hn*T1;
H12i = H21i.inv();
//在参数mSigma下给这个H矩阵评分
currentScore = CheckHomography(H21i, H12i, vbCurrentInliers, mSigma);
if(currentScore>score)
{
H21 = H21i.clone();
vbMatchesInliers = vbCurrentInliers;
score = currentScore;
}
}
}
/**计算F矩阵 */
void Initializer::FindFundamental(vector<bool> &vbMatchesInliers, float &score, cv::Mat &F21)
{
// Number of putative matches
const int N = vbMatchesInliers.size();
// Normalize coordinates
vector<cv::Point2f> vPn1, vPn2;
cv::Mat T1, T2;
Normalize(mvKeys1,vPn1, T1);
Normalize(mvKeys2,vPn2, T2);
cv::Mat T2t = T2.t();
// Best Results variables
score = 0.0;
vbMatchesInliers = vector<bool>(N,false);
// Iteration variables
vector<cv::Point2f> vPn1i(8);
vector<cv::Point2f> vPn2i(8);
cv::Mat F21i;
vector<bool> vbCurrentInliers(N,false);
float currentScore;
// Perform all RANSAC iterations and save the solution with highest score
for(int it=0; it<mMaxIterations; it++)
{
// Select a minimum set
for(int j=0; j<8; j++)
{
int idx = mvSets[it][j];
vPn1i[j] = vPn1[mvMatches12[idx].first];
vPn2i[j] = vPn2[mvMatches12[idx].second];
}
cv::Mat Fn = ComputeF21(vPn1i,vPn2i);
F21i = T2t*Fn*T1;
currentScore = CheckFundamental(F21i, vbCurrentInliers, mSigma);
if(currentScore>score)
{
F21 = F21i.clone();
vbMatchesInliers = vbCurrentInliers;
score = currentScore;
}
}
}
cv::Mat Initializer::ComputeH21(const vector<cv::Point2f> &vP1, const vector<cv::Point2f> &vP2)
{
const int N = vP1.size();
cv::Mat A(2*N,9,CV_32F);
for(int i=0; i<N; i++)
{
const float u1 = vP1[i].x;
const float v1 = vP1[i].y;
const float u2 = vP2[i].x;
const float v2 = vP2[i].y;
A.at<float>(2*i,0) = 0.0;
A.at<float>(2*i,1) = 0.0;
A.at<float>(2*i,2) = 0.0;
A.at<float>(2*i,3) = -u1;
A.at<float>(2*i,4) = -v1;
A.at<float>(2*i,5) = -1;
A.at<float>(2*i,6) = v2*u1;
A.at<float>(2*i,7) = v2*v1;
A.at<float>(2*i,8) = v2;
A.at<float>(2*i+1,0) = u1;
A.at<float>(2*i+1,1) = v1;
A.at<float>(2*i+1,2) = 1;
A.at<float>(2*i+1,3) = 0.0;
A.at<float>(2*i+1,4) = 0.0;
A.at<float>(2*i+1,5) = 0.0;
A.at<float>(2*i+1,6) = -u2*u1;
A.at<float>(2*i+1,7) = -u2*v1;
A.at<float>(2*i+1,8) = -u2;
}
cv::Mat u,w,vt;
cv::SVDecomp(A,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);
return vt.row(8).reshape(0, 3);
}
cv::Mat Initializer::ComputeF21(const vector<cv::Point2f> &vP1,const vector<cv::Point2f> &vP2)
{
const int N = vP1.size();
cv::Mat A(N,9,CV_32F);
for(int i=0; i<N; i++)
{
const float u1 = vP1[i].x;
const float v1 = vP1[i].y;
const float u2 = vP2[i].x;
const float v2 = vP2[i].y;
A.at<float>(i,0) = u2*u1;
A.at<float>(i,1) = u2*v1;
A.at<float>(i,2) = u2;
A.at<float>(i,3) = v2*u1;
A.at<float>(i,4) = v2*v1;
A.at<float>(i,5) = v2;
A.at<float>(i,6) = u1;
A.at<float>(i,7) = v1;
A.at<float>(i,8) = 1;
}
cv::Mat u,w,vt;
cv::SVDecomp(A,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);
cv::Mat Fpre = vt.row(8).reshape(0, 3);
cv::SVDecomp(Fpre,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);
w.at<float>(2)=0;
return u*cv::Mat::diag(w)*vt;
}
float Initializer::CheckHomography(const cv::Mat &H21, const cv::Mat &H12, vector<bool> &vbMatchesInliers, float sigma)
{
const int N = mvMatches12.size();
const float h11 = H21.at<float>(0,0);
const float h12 = H21.at<float>(0,1);
const float h13 = H21.at<float>(0,2);
const float h21 = H21.at<float>(1,0);
const float h22 = H21.at<float>(1,1);
const float h23 = H21.at<float>(1,2);
const float h31 = H21.at<float>(2,0);
const float h32 = H21.at<float>(2,1);
const float h33 = H21.at<float>(2,2);
const float h11inv = H12.at<float>(0,0);
const float h12inv = H12.at<float>(0,1);
const float h13inv = H12.at<float>(0,2);
const float h21inv = H12.at<float>(1,0);
const float h22inv = H12.at<float>(1,1);
const float h23inv = H12.at<float>(1,2);
const float h31inv = H12.at<float>(2,0);
const float h32inv = H12.at<float>(2,1);
const float h33inv = H12.at<float>(2,2);
vbMatchesInliers.resize(N);
float score = 0;
//来源于卡方分布,有95%的可信度
const float th = 5.991;
//卡方分布的方差
const float invSigmaSquare = 1.0/(sigma*sigma);
for(int i=0; i<N; i++)
{
bool bIn = true;
const cv::KeyPoint &kp1 = mvKeys1[mvMatches12[i].first];
const cv::KeyPoint &kp2 = mvKeys2[mvMatches12[i].second];
const float u1 = kp1.pt.x;
const float v1 = kp1.pt.y;
const float u2 = kp2.pt.x;
const float v2 = kp2.pt.y;
// Reprojection error in first image
// x2in1 = H12*x2
const float w2in1inv = 1.0/(h31inv*u2+h32inv*v2+h33inv);
const float u2in1 = (h11inv*u2+h12inv*v2+h13inv)*w2in1inv;
const float v2in1 = (h21inv*u2+h22inv*v2+h23inv)*w2in1inv;
//计算v2,u2投影到F1之后,与v1,u1的差值的平方和
const float squareDist1 = (u1-u2in1)*(u1-u2in1)+(v1-v2in1)*(v1-v2in1);
//计算卡方值
//ref https://en.wikipedia.org/wiki/Chi-square_distribution [Occurrence and applications] table(chi-square distribution)
const float chiSquare1 = squareDist1*invSigmaSquare;
if(chiSquare1>th)
bIn = false;
else
score += th - chiSquare1;
// Reprojection error in second image
// x1in2 = H21*x1
const float w1in2inv = 1.0/(h31*u1+h32*v1+h33);
const float u1in2 = (h11*u1+h12*v1+h13)*w1in2inv;
const float v1in2 = (h21*u1+h22*v1+h23)*w1in2inv;
const float squareDist2 = (u2-u1in2)*(u2-u1in2)+(v2-v1in2)*(v2-v1in2);
const float chiSquare2 = squareDist2*invSigmaSquare;
//统计inlier和分数
if(chiSquare2>th)
bIn = false;
else
score += th - chiSquare2;
if(bIn)
vbMatchesInliers[i]=true;
else
vbMatchesInliers[i]=false;
}
return score;
}
float Initializer::CheckFundamental(const cv::Mat &F21, vector<bool> &vbMatchesInliers, float sigma)
{
const int N = mvMatches12.size();
const float f11 = F21.at<float>(0,0);
const float f12 = F21.at<float>(0,1);
const float f13 = F21.at<float>(0,2);
const float f21 = F21.at<float>(1,0);
const float f22 = F21.at<float>(1,1);
const float f23 = F21.at<float>(1,2);
const float f31 = F21.at<float>(2,0);
const float f32 = F21.at<float>(2,1);
const float f33 = F21.at<float>(2,2);
vbMatchesInliers.resize(N);
float score = 0;
//卡方分布1自由度,95%可信度
const float th = 3.841;
//卡方分布2自由度,95%可信度
const float thScore = 5.991;
const float invSigmaSquare = 1.0/(sigma*sigma);
for(int i=0; i<N; i++)
{
bool bIn = true;
const cv::KeyPoint &kp1 = mvKeys1[mvMatches12[i].first];
const cv::KeyPoint &kp2 = mvKeys2[mvMatches12[i].second];
const float u1 = kp1.pt.x;
const float v1 = kp1.pt.y;
const float u2 = kp2.pt.x;
const float v2 = kp2.pt.y;
// Reprojection error in second image
// l2=F21x1=(a2,b2,c2)
const float a2 = f11*u1+f12*v1+f13;
const float b2 = f21*u1+f22*v1+f23;
const float c2 = f31*u1+f32*v1+f33;
const float num2 = a2*u2+b2*v2+c2;
const float squareDist1 = num2*num2/(a2*a2+b2*b2);
const float chiSquare1 = squareDist1*invSigmaSquare;
if(chiSquare1>th)
bIn = false;
else
score += thScore - chiSquare1;
// Reprojection error in second image
// l1 =x2tF21=(a1,b1,c1)
//F矩阵将点映射成一条直线
const float a1 = f11*u2+f21*v2+f31;
const float b1 = f12*u2+f22*v2+f32;
const float c1 = f13*u2+f23*v2+f33;
const float num1 = a1*u1+b1*v1+c1;
//点到直线的距离的平方
const float squareDist2 = num1*num1/(a1*a1+b1*b1);
const float chiSquare2 = squareDist2*invSigmaSquare;
if(chiSquare2>th)
bIn = false;
else
score += thScore - chiSquare2;
if(bIn)
vbMatchesInliers[i]=true;
else
vbMatchesInliers[i]=false;
}
return score;
}
bool Initializer::ReconstructF(vector<bool> &vbMatchesInliers, cv::Mat &F21, cv::Mat &K,
cv::Mat &R21, cv::Mat &t21, vector<cv::Point3f> &vP3D, vector<bool> &vbTriangulated, float minParallax, int minTriangulated)
{
int N=0;
for(size_t i=0, iend = vbMatchesInliers.size() ; i<iend; i++)
if(vbMatchesInliers[i])
N++;
// Compute Essential Matrix from Fundamental Matrix
cv::Mat E21 = K.t()*F21*K;
cv::Mat R1, R2, t;
// Recover the 4 motion hypotheses
DecomposeE(E21,R1,R2,t);
cv::Mat t1=t;
cv::Mat t2=-t;
// Reconstruct with the 4 hyphoteses and check
//用三角化的点的方式检测4种模型
vector<cv::Point3f> vP3D1, vP3D2, vP3D3, vP3D4;
vector<bool> vbTriangulated1,vbTriangulated2,vbTriangulated3, vbTriangulated4;
float parallax1,parallax2, parallax3, parallax4;
int nGood1 = CheckRT(R1,t1,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D1, 4.0*mSigma2, vbTriangulated1, parallax1);
int nGood2 = CheckRT(R2,t1,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D2, 4.0*mSigma2, vbTriangulated2, parallax2);
int nGood3 = CheckRT(R1,t2,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D3, 4.0*mSigma2, vbTriangulated3, parallax3);
int nGood4 = CheckRT(R2,t2,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D4, 4.0*mSigma2, vbTriangulated4, parallax4);
int maxGood = max(nGood1,max(nGood2,max(nGood3,nGood4)));
R21 = cv::Mat();
t21 = cv::Mat();
int nMinGood = max(static_cast<int>(0.9*N),minTriangulated);
int nsimilar = 0;
if(nGood1>0.7*maxGood)
nsimilar++;
if(nGood2>0.7*maxGood)
nsimilar++;
if(nGood3>0.7*maxGood)
nsimilar++;
if(nGood4>0.7*maxGood)
nsimilar++;
// If there is not a clear winner or not enough triangulated points reject initialization
//maxGood
//nsimilar>1,没有一个模型明显好于其它模型
if(maxGood<nMinGood || nsimilar>1)
{
return false;
}
// If best reconstruction has enough parallax initialize
if(maxGood==nGood1)
{
if(parallax1>minParallax)
{
vP3D = vP3D1;
vbTriangulated = vbTriangulated1;
R1.copyTo(R21);
t1.copyTo(t21);
return true;
}
}else if(maxGood==nGood2)
{
if(parallax2>minParallax)
{
vP3D = vP3D2;
vbTriangulated = vbTriangulated2;
R2.copyTo(R21);
t1.copyTo(t21);
return true;
}
}else if(maxGood==nGood3)
{
if(parallax3>minParallax)
{
vP3D = vP3D3;
vbTriangulated = vbTriangulated3;
R1.copyTo(R21);
t2.copyTo(t21);
return true;
}
}else if(maxGood==nGood4)
{
if(parallax4>minParallax)
{
vP3D = vP3D4;
vbTriangulated = vbTriangulated4;
R2.copyTo(R21);
t2.copyTo(t21);
return true;
}
}
return false;
}
/**
* 将H矩阵分解为R,t,并三角化点
*/
bool Initializer::ReconstructH(vector<bool> &vbMatchesInliers, cv::Mat &H21, cv::Mat &K,
cv::Mat &R21, cv::Mat &t21, vector<cv::Point3f> &vP3D, vector<bool> &vbTriangulated, float minParallax, int minTriangulated)
{
int N=0;
for(size_t i=0, iend = vbMatchesInliers.size() ; i<iend; i++)
if(vbMatchesInliers[i])
N++;
// We recover 8 motion hypotheses using the method of Faugeras et al.
// Motion and structure from motion in a piecewise planar environment.
// International Journal of Pattern Recognition and Artificial Intelligence, 1988
cv::Mat invK = K.inv();
cv::Mat A = invK*H21*K;
cv::Mat U,w,Vt,V;
cv::SVD::compute(A,w,U,Vt,cv::SVD::FULL_UV);
V=Vt.t();
float s = cv::determinant(U)*cv::determinant(Vt);
float d1 = w.at<float>(0);
float d2 = w.at<float>(1);
float d3 = w.at<float>(2);
if(d1/d2<1.00001 || d2/d3<1.00001)
{
return false;
}
vector<cv::Mat> vR, vt, vn;
vR.reserve(8);
vt.reserve(8);
vn.reserve(8);
//n'=[x1 0 x3] 4 posibilities e1=e3=1, e1=1 e3=-1, e1=-1 e3=1, e1=e3=-1
float aux1 = sqrt((d1*d1-d2*d2)/(d1*d1-d3*d3));
float aux3 = sqrt((d2*d2-d3*d3)/(d1*d1-d3*d3));
float x1[] = {aux1,aux1,-aux1,-aux1};
float x3[] = {aux3,-aux3,aux3,-aux3};
//case d'=d2
float aux_stheta = sqrt((d1*d1-d2*d2)*(d2*d2-d3*d3))/((d1+d3)*d2);
float ctheta = (d2*d2+d1*d3)/((d1+d3)*d2);
float stheta[] = {aux_stheta, -aux_stheta, -aux_stheta, aux_stheta};
for(int i=0; i<4; i++)
{
cv::Mat Rp=cv::Mat::eye(3,3,CV_32F);
Rp.at<float>(0,0)=ctheta;
Rp.at<float>(0,2)=-stheta[i];
Rp.at<float>(2,0)=stheta[i];
Rp.at<float>(2,2)=ctheta;
cv::Mat R = s*U*Rp*Vt;
vR.push_back(R);
cv::Mat tp(3,1,CV_32F);
tp.at<float>(0)=x1[i];
tp.at<float>(1)=0;
tp.at<float>(2)=-x3[i];
tp*=d1-d3;
cv::Mat t = U*tp;
vt.push_back(t/cv::norm(t));
cv::Mat np(3,1,CV_32F);
np.at<float>(0)=x1[i];
np.at<float>(1)=0;
np.at<float>(2)=x3[i];
cv::Mat n = V*np;
if(n.at<float>(2)<0)
n=-n;
vn.push_back(n);
}
//case d'=-d2
float aux_sphi = sqrt((d1*d1-d2*d2)*(d2*d2-d3*d3))/((d1-d3)*d2);
float cphi = (d1*d3-d2*d2)/((d1-d3)*d2);
float sphi[] = {aux_sphi, -aux_sphi, -aux_sphi, aux_sphi};
for(int i=0; i<4; i++)
{
cv::Mat Rp=cv::Mat::eye(3,3,CV_32F);
Rp.at<float>(0,0)=cphi;
Rp.at<float>(0,2)=sphi[i];
Rp.at<float>(1,1)=-1;
Rp.at<float>(2,0)=sphi[i];
Rp.at<float>(2,2)=-cphi;
cv::Mat R = s*U*Rp*Vt;
vR.push_back(R);
cv::Mat tp(3,1,CV_32F);
tp.at<float>(0)=x1[i];
tp.at<float>(1)=0;
tp.at<float>(2)=x3[i];
tp*=d1+d3;
cv::Mat t = U*tp;
vt.push_back(t/cv::norm(t));
cv::Mat np(3,1,CV_32F);
np.at<float>(0)=x1[i];
np.at<float>(1)=0;
np.at<float>(2)=x3[i];
cv::Mat n = V*np;
if(n.at<float>(2)<0)
n=-n;
vn.push_back(n);
}
int bestGood = 0;
int secondBestGood = 0;
int bestSolutionIdx = -1;
float bestParallax = -1;
vector<cv::Point3f> bestP3D;
vector<bool> bestTriangulated;
// Instead of applying the visibility constraints proposed in the Faugeras' paper (which could fail for points seen with low parallax)
// We reconstruct all hypotheses and check in terms of triangulated points and parallax
//遍历计算出来的8种,R,t,然后根据R,t计算三角化出来的匹配点的数目,找出最好和次好的模型
for(size_t i=0; i<8; i++)
{
float parallaxi;
vector<cv::Point3f> vP3Di;
vector<bool> vbTriangulatedi;
int nGood = CheckRT(vR[i],vt[i],mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K,vP3Di, 4.0*mSigma2, vbTriangulatedi, parallaxi);
if(nGood>bestGood)
{
secondBestGood = bestGood;
bestGood = nGood;
bestSolutionIdx = i;
bestParallax = parallaxi;
bestP3D = vP3Di;
bestTriangulated = vbTriangulatedi;
}
else if(nGood>secondBestGood)
{
secondBestGood = nGood;
}
}
/**
* 1.最好的模型比次好的模型有足够的差距;
* 2.最好的模型视差>=最小视差
* 3.最好模型的三角化陈宫的点的数目大于一定的阈值;
* 4.最好的模型的三角化成功数量和通过H矩阵重投影的特征点数目的比例大于0.9
*/
if(secondBestGood<0.75*bestGood && bestParallax>=minParallax && bestGood>minTriangulated && bestGood>0.9*N)
{
vR[bestSolutionIdx].copyTo(R21);
vt[bestSolutionIdx].copyTo(t21);
vP3D = bestP3D;
vbTriangulated = bestTriangulated;
return true;
}
return false;
}
/// 12.2 Linear triangulation methods
void Initializer::Triangulate(const cv::KeyPoint &kp1, const cv::KeyPoint &kp2, const cv::Mat &P1, const cv::Mat &P2, cv::Mat &x3D)
{
cv::Mat A(4,4,CV_32F);
A.row(0) = kp1.pt.x*P1.row(2)-P1.row(0);
A.row(1) = kp1.pt.y*P1.row(2)-P1.row(1);
A.row(2) = kp2.pt.x*P2.row(2)-P2.row(0);
A.row(3) = kp2.pt.y*P2.row(2)-P2.row(1);
cv::Mat u,w,vt;
cv::SVD::compute(A,w,u,vt,cv::SVD::MODIFY_A| cv::SVD::FULL_UV);
x3D = vt.row(3).t();
x3D = x3D.rowRange(0,3)/x3D.at<float>(3);
}
/// vNormalizedPoints=T*vKeys
///
/// T = [ sx 0 -meanX*sX;
/// 0 sy -meanY*sY;
/// 0 0 1 ]
/// 对特征点的像素坐标进行归一化
void Initializer::Normalize(const vector<cv::KeyPoint> &vKeys, vector<cv::Point2f> &vNormalizedPoints, cv::Mat &T)
{
float meanX = 0;
float meanY = 0;
const int N = vKeys.size();
vNormalizedPoints.resize(N);
/// 1. get meanX and meanY
for(int i=0; i<N; i++)
{
meanX += vKeys[i].pt.x;
meanY += vKeys[i].pt.y;
}
//1.求出质心
meanX = meanX/N;
meanY = meanY/N;
float meanDevX = 0;
float meanDevY = 0;
//2.减去质心
for(int i=0; i<N; i++)
{
/// remove the center of mass
vNormalizedPoints[i].x = vKeys[i].pt.x - meanX;
vNormalizedPoints[i].y = vKeys[i].pt.y - meanY;
meanDevX += fabs(vNormalizedPoints[i].x);
meanDevY += fabs(vNormalizedPoints[i].y);
}
/// mean abs dis to center of mass
//3.计算特征点到质心的平均距离
meanDevX = meanDevX/N;
meanDevY = meanDevY/N;
///4. 计算缩放因子 sX, sY
float sX = 1.0/meanDevX;
float sY = 1.0/meanDevY;
///5. 使用缩放因此缩放特征点
for(int i=0; i<N; i++)
{
vNormalizedPoints[i].x = vNormalizedPoints[i].x * sX;
vNormalizedPoints[i].y = vNormalizedPoints[i].y * sY;
}
//6.保存转换矩阵T,用来恢复归一化之前的尺度信息
T = cv::Mat::eye(3,3,CV_32F);
T.at<float>(0,0) = sX;
T.at<float>(1,1) = sY;
T.at<float>(0,2) = -meanX*sX;
T.at<float>(1,2) = -meanY*sY;
}
/**
* @brief:检测R,t
* R:输入的旋转矩阵R;
* t:输入的平移矩阵t;
* vKeys1:输入的第一组特征点
* vKeys2:输入的第二组特征点;
* vMatches12:输入的匹配的数目;
* vbMatchesInliers:输出inlier的vector
* K:输入内参
* vP3D:输出3D点的坐标;
* th2:输入阈值
* vbGood:输出好的点的flag;
* parallax:输出视差
*/
int Initializer::CheckRT(const cv::Mat &R, const cv::Mat &t, const vector<cv::KeyPoint> &vKeys1, const vector<cv::KeyPoint> &vKeys2,
const vector<Match> &vMatches12, vector<bool> &vbMatchesInliers,
const cv::Mat &K, vector<cv::Point3f> &vP3D, float th2, vector<bool> &vbGood, float ¶llax)
{
// Calibration parameters
const float fx = K.at<float>(0,0);
const float fy = K.at<float>(1,1);
const float cx = K.at<float>(0,2);
const float cy = K.at<float>(1,2);
vbGood = vector<bool>(vKeys1.size(),false);
vP3D.resize(vKeys1.size());
vector<float> vCosParallax;
vCosParallax.reserve(vKeys1.size());
// Camera 1 Projection Matrix K[I|0]
//相机1的坐标系和世界坐标系相同
cv::Mat P1(3,4,CV_32F,cv::Scalar(0));
K.copyTo(P1.rowRange(0,3).colRange(0,3));
//假设相机光心的在世界坐标系的坐标为(0,0,0)
cv::Mat O1 = cv::Mat::zeros(3,1,CV_32F);
// Camera 2 Projection Matrix K[R|t]
cv::Mat P2(3,4,CV_32F);
R.copyTo(P2.rowRange(0,3).colRange(0,3));
t.copyTo(P2.rowRange(0,3).col(3));
P2 = K*P2;
//将相机光心2转换到世界坐标系
//O1=R12*O2+t12 ==> O2=R12'*(O1-t12) ==> O2=-R12'*t12
cv::Mat O2 = -R.t()*t;
int nGood=0;
//遍历所有匹配的特征点
for(size_t i=0, iend=vMatches12.size();i<iend;i++)
{
//如果不是inlier,则跳过
if(!vbMatchesInliers[i])
continue;
const cv::KeyPoint &kp1 = vKeys1[vMatches12[i].first];
const cv::KeyPoint &kp2 = vKeys2[vMatches12[i].second];
cv::Mat p3dC1;
//三角化匹配特征点
Triangulate(kp1,kp2,P1,P2,p3dC1);
//判断三角化点的大小是否无穷大
if(!isfinite(p3dC1.at<float>(0)) || !isfinite(p3dC1.at<float>(1)) || !isfinite(p3dC1.at<float>(2)))
{
vbGood[vMatches12[i].first]=false;
continue;
}
// Check parallax
//检测视差
cv::Mat normal1 = p3dC1 - O1;
float dist1 = cv::norm(normal1);
cv::Mat normal2 = p3dC1 - O2;
float dist2 = cv::norm(normal2);
//3D点和两个光心构成的夹角的cos值
float cosParallax = normal1.dot(normal2)/(dist1*dist2);
// Check depth in front of first camera (only if enough parallax, as "infinite" points can easily go to negative depth)
//视差角度太大,并且深度为负,就淘汰
if(p3dC1.at<float>(2)<=0 && cosParallax<0.99998)
continue;
// Check depth in front of second camera (only if enough parallax, as "infinite" points can easily go to negative depth)
//视差角度太大,并且深度为负,就淘汰
cv::Mat p3dC2 = R*p3dC1+t;
if(p3dC2.at<float>(2)<=0 && cosParallax<0.99998)
continue;
// Check reprojection error in first image
//将三角化出来的3D点重新投影到第一帧图像,然后计算方差
float im1x, im1y;
float invZ1 = 1.0/p3dC1.at<float>(2);
im1x = fx*p3dC1.at<float>(0)*invZ1+cx;
im1y = fy*p3dC1.at<float>(1)*invZ1+cy;
float squareError1 = (im1x-kp1.pt.x)*(im1x-kp1.pt.x)+(im1y-kp1.pt.y)*(im1y-kp1.pt.y);
if(squareError1>th2)
continue;
// Check reprojection error in second image
//将三角化出来的3D点重新投影到第二帧图像,然后计算方差
float im2x, im2y;
float invZ2 = 1.0/p3dC2.at<float>(2);
im2x = fx*p3dC2.at<float>(0)*invZ2+cx;
im2y = fy*p3dC2.at<float>(1)*invZ2+cy;
float squareError2 = (im2x-kp2.pt.x)*(im2x-kp2.pt.x)+(im2y-kp2.pt.y)*(im2y-kp2.pt.y);
//重投影误差太大,淘汰
if(squareError2>th2)
continue;
//保存视差角
vCosParallax.push_back(cosParallax);
vP3D[vMatches12[i].first] = cv::Point3f(p3dC1.at<float>(0),p3dC1.at<float>(1),p3dC1.at<float>(2));
nGood++;
//视差角度足够大,三角化成功
if(cosParallax<0.99998)
vbGood[vMatches12[i].first]=true;
}//for
if(nGood>0)
{
//视差角度从大到小排列
sort(vCosParallax.begin(),vCosParallax.end());
//取出第50个,或者最后(就是最小的视差角度最大的那个)
size_t idx = min(50,int(vCosParallax.size()-1));
//计算视差角
parallax = acos(vCosParallax[idx])*180/CV_PI;
}
else
parallax=0;
return nGood;
}
/**
* 分解本质矩阵,得到两种不同R,t
*/
void Initializer::DecomposeE(const cv::Mat &E, cv::Mat &R1, cv::Mat &R2, cv::Mat &t)
{
cv::Mat u,w,vt;
cv::SVD::compute(E,w,u,vt);
u.col(2).copyTo(t);
t=t/cv::norm(t);
cv::Mat W(3,3,CV_32F,cv::Scalar(0));
W.at<float>(0,1)=-1;
W.at<float>(1,0)=1;
W.at<float>(2,2)=1;
R1 = u*W*vt;
if(cv::determinant(R1)<0)
R1=-R1;
R2 = u*W.t()*vt;
if(cv::determinant(R2)<0)
R2=-R2;
}
} //namespace ORB_SLAM