- 视觉SLAM学习打卡【8-1】-视觉里程计·直接法
肝帝永垂不朽
#SLAM计算机视觉opencvc++
本节直接法与上节特征点法,为视觉里程计估计位姿的两大主流方法。而在引出直接法前,先介绍光流法(二者均对灰度值I做文章)。至此,前端VO总算结束了。学下来一个感受就是前几章的数学基础很重要,尤其是构建最小二乘的非线性优化(BA),几乎每种方法都有其一席之地。视觉SLAM学习打卡【8-1】-视觉里程计·直接法一、光流法(1)前提(实际中较难满足)(2)理论推导(3)附:超定方程求解二、直接法(1)理论
- SLAM学习笔记总结
搬砖成就梦想
机器学习人工智能深度学习学习笔记人工智能
文章目录SLAM001什么是回环检测?002常用的回环检测方法有哪些?003介绍一下Gauss-Netwon和LM算法004介绍一下Ceres优化库,比如你使用过里面哪些内容?005描述(扩展)卡尔曼滤波与粒子滤波,你自己在用卡尔曼滤波时遇到什么问题没有?006除了视觉传感,还用过其他传感吗?比如GPS,激光雷达007什么是紧耦合、松耦合?优缺点008你认为室内SLAM与自动驾驶SLAM有什么区别
- slam学习——旋转向量、旋转矩阵、欧拉角、四元素的概念和运用
前途似海_来日方长
文章目录一、有关坐标系变换的一些概述1、旋转向量2、旋转矩阵3、四元数4、欧拉角二、各种表示方法之间的转换1、旋转向量、旋转矩阵、四元素之间的转化2、欧拉角和旋转矩阵之间的转化三、总结一、有关坐标系变换的一些概述坐标系的变换一般来说有四种方式表示变换:旋转向量、旋转矩阵、欧拉角和四元数,这里分别介绍下相应的原理及如何使用,最后附上相互转化的代码。常用的一些如下:旋转矩阵(3X3):Eigen::M
- SLAM学习入门--什么是回环检测
搬砖成就梦想
人工智能深度学习SLAM学习专栏学习人工智能算法
文章目录SLAM001什么是回环检测?002常用的回环检测方法有哪些?003介绍一下Gauss-Netwon和LM算法004介绍一下Ceres优化库,比如你使用过里面哪些内容?005描述(扩展)卡尔曼滤波与粒子滤波,你自己在用卡尔曼滤波时遇到什么问题没有?006除了视觉传感,还用过其他传感吗?比如GPS,激光雷达007什么是紧耦合、松耦合?优缺点008你认为室内SLAM与自动驾驶SLAM有什么区别
- SLAM学习入门--编程语言
搬砖成就梦想
人工智能深度学习SLAM学习专栏学习SLAM
文章目录编程语言一、C/C++C与C++的区别(面向对象的特点)C++与Python的区别判断struct的字节数static作用Const作用extern"C"的作用多态如何实现多态?虚函数虚函数怎么实现的?析构函数虚析构函数的作用virtual函数能不能用在构造函数中
- 从零入门激光SLAM(十二)——evo工具箱
桦树无泪
从零入门激光SLAM机器人无人机自动驾驶
大家好呀,我是一个SLAM方向的在读博士,深知SLAM学习过程一路走来的坎坷,也十分感谢各位大佬的优质文章和源码。随着知识的越来越多,越来越细,我准备整理一个自己的激光SLAM学习笔记专栏,从0带大家快速上手激光SLAM,也方便想入门SLAM的同学和小白学习参考,相信看完会有一定的收获。如有不对的地方欢迎指出,欢迎各位大佬交流讨论,一起进步。博主创建了一个科研互助群Q:772356582,欢迎大家
- 【视觉SLAM十四讲】李群与李代数
Louis1874
#视觉SLAM计算机视觉算法抽象代数矩阵slam
本文为视觉SLAM学习总结,讲解对观测方程中xxx该如何优化。欢迎交流本讲内容概要李群与李代数的概念,SO(3),SE(3)SO(3),SE(3)SO(3),SE(3)与对应李代数的表示方法李代数上的求导方式和意义使用Sophus对李代数进行运算李群和李代数基础旋转矩阵自身带有约束(正交且行列式为1)。作为优化变量,会引入额外的约束,使优化变得困难。而在李代数上可以变成无约束优化。三维旋转矩阵构成
- 视觉SLAM学习笔记番外篇——git的基本使用与上传文件到github
隔壁老王的学习日志
SLAM学习学习ubuntuc++githubgit
目录一、注册github二、安装git三、新建仓库四、上传文件五、报错解决方法一、注册github登录https://github.com,验证邮箱就可以注册,国内也许网速较慢,可以等待或者“想想办法”,一般可以裸连。二、安装git去官网https://git-scm.com/download/win找到安装包在windows系统下安装,安装过程基本上都点击next,习惯上建立桌面快捷方式,然后桌
- SLAM学习——相机模型(针孔+鱼眼)
white_Learner
SLAMSLAM相机机器人
针孔相机模型针孔相机模型是很常用,而且有效的模型,它描述了一束光线通过针孔之后,在针孔背面投影成像的关系,基于针孔的投影过程可以通过针孔和畸变两个模型来描述。模型中有四个坐标系,分别为world,camera,image,pixelworld为世界坐标系,可以任意指定xwx_wxw轴和ywy_wyw轴,为上图P点所在坐标系。camera为相机坐标系,原点位于小孔,zcz_czc轴与光轴重合,xcx
- 2023-01-11日志
独孤西
按照计划今天小休,任务较少。今天做了SLAM的学习,然后学习了一点感兴趣的专业无关的东西,再就是每日坚持也有做。论文阅读部分,今天读了传感器标定的部分。传感器标定分为在线标定与离线标定两种,文章对一些重要的标定方法也提了一嘴,在开始也介绍了传感器标定的重要性。并且今天又找了一篇新的综述作为手边这篇综述读完后的工作,是关于深度学习在SLAM中应用的综述。今天的SLAM学习中也对SLAM的学习方法做了
- 激光slam学习笔记2--激光点云数据结构特点可视化查看
鸿_H
slam学习
背景:不同厂商的激光点云结果存在一定差异,比如有些只有xyz,有些包含其他,如反光率、时间戳、ring等。如何快速判断是个值得学习的点概要:对于rosbag类型的激光点云,介绍使用rviz快速查看点云结构特点如何从rviz加载话题可视化在rosmaster中的点云话题不做展开介绍1、操作说明右击rviz空白处->勾选Selection(新增一块界面1)->左击Select->拉选点云->在界面1的
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】SLAM(最终篇)
格图素书
目标检测YOLO人工智能
目录前言SLAM学习方法论语义SLAM与深度相机SLAM-机器人ROSSLAM与ROS之间的关系
- 【SLAM学习】《视觉SLAM十四讲》第七讲 ICP误差求导公式推导
顺其灬自然丨
机器人系统slam公式推导ICP第七讲
最近继续学习高博的《视觉SLAM十四讲》,看到第七章,对于ICP计算时的误差公式比较迷惑,花时间自己推导了一下,以此记录,也供大家查看。其中最后推导出来,按照我写的方式应该是一个4×6的矩阵,但是如果在实现的时候,可以把它的最后一行忽略,只保留前三行,变为3×6的矩阵。以此作为记录,也希望对大家有所帮助。
- 从零入门激光SLAM(九)——三维点云基础
桦树无泪
从零入门激光SLAM计算机视觉人工智能
大家好呀,我是一个SLAM方向的在读博士,深知SLAM学习过程一路走来的坎坷,也十分感谢各位大佬的优质文章和源码。随着知识的越来越多,越来越细,我准备整理一个自己的激光SLAM学习笔记专栏,从0带大家快速上手激光SLAM,也方便想入门SLAM的同学和小白学习参考,相信看完会有一定的收获。如有不对的地方欢迎指出,欢迎各位大佬交流讨论,一起进步。博主创建了一个科研互助群Q:772356582,欢迎大家
- 从零入门激光SLAM(十一)——LeGo-LOAM源码超详细解析1
桦树无泪
从零入门激光SLAM人工智能机器人自动驾驶
大家好呀,我是一个SLAM方向的在读博士,深知SLAM学习过程一路走来的坎坷,也十分感谢各位大佬的优质文章和源码。随着知识的越来越多,越来越细,我准备整理一个自己的激光SLAM学习笔记专栏,从0带大家快速上手激光SLAM,也方便想入门SLAM的同学和小白学习参考,相信看完会有一定的收获。如有不对的地方欢迎指出,欢迎各位大佬交流讨论,一起进步。博主创建了一个科研互助群Q:772356582,欢迎大家
- 【SLAM学习】(三)激光雷达原理及分类
Magical-E
SLAM人工智能计算机视觉slam激光雷达
文章目录测距原理三角测距原理TOF测距原理雷达分类机械激光雷达MEMS激光雷达相控阵激光雷达FLASH激光雷达激光雷达的数据测距原理三角测距原理三角测距原理如上图:激光雷达发射器先发射激光,经过物体(ObjectObjectObject)反射后被CMOSCMOSCMOS(一种图像传感器,即图中ImagerImagerImager)捕捉,设捕捉点为x2x_2x2。现过焦点OOO作一条虚线平行于入射光
- SLAM学习笔记3
FOFI
三维空间刚体运动,笔记内容有向量内积,向量外积,欧氏变换,旋转向量,欧拉角,旋转矩阵,四元数以及它们的转换关系,代码是Eigen库的基本使用。笔记1.jpg笔记2.jpg代码如下:#include#include#include#include#include#includeusingnamespacestd;#defineMATRIX_SIZE50intmain(intargc,char**ar
- 【SLAM学习笔记】7-ORB_SLAM3关键源码分析⑤ Optimizer(二)局部地图优化
口哨糖youri
SLAM其他
2021SC@SDUSC目录1.前言2.代码分析1.前言这一部分代码量巨大,查阅了很多资料结合来看的代码,将分为以下部分进行分析单帧优化局部地图优化全局优化尺度与重力优化sim3优化地图回环优化地图融合优化2.代码分析LocalBundleAdjustmentLocalMapping::Run()使用,纯视觉总结下与ORBSLAM2的不同:前面操作基本一样,但优化时2代去掉了误差大的点又进行优化了
- 博客学习目录
Howe_xixi
学习
填坑专区,督促自己有系统的学习归纳。先把想学的挖个坑,一边填坑一边挖坑。怕什么真理无穷,进一步有一步的欢喜。目录【基础学科学习】【线性代数笔记】《3Blue1Brown》笔记【SLAM】【VSLAM笔记】《视觉SLAM十四讲》学习笔记Smoothly-VSLAM学习笔记【嵌入式开发】【鸿蒙开发笔记】OpenHarmony北向学习笔记【Linux系统】【编程语言学习】【C++笔记】【Python笔记
- SLAM学习笔记(十八)3D激光SLAM——Cartographer第一视角点云可视化配置与使用方法(最新)
zkk9527
SLAM学习笔记slamCartographerRos建图
写这一篇文章的原因是随着相关内容的不断维护,这部分网上的一些资料都已经比较老了,配置起来走了一些弯路。不过,想当年实习配置SLAM算法库的时候什么依赖的报错没有调好过?哈哈,在今天配置完以后,特意总结此文章,把过程记录一下。方便我之后再配,还有就是给大家提供一些方便,不要把精力都花在像这种乱七八糟的事情上。目录安装Cartographer下载3D包保存点云数据可视化点云数据编译point_clou
- 激光slam学习笔记3--轨迹建图经验接口介绍
鸿_H
slam学习
背景:如果给了一条轨迹和轨迹时间戳上的激光点云,那么拼接地图是一个有趣的事情。概要:先介绍来自liosam里面手动计算的接口,后面介绍一种pcl自带的接口。1、手动计算的接口该接口采用手撕方式写的,定制性,运行速度更快些,但通用性不行。pcl::PointCloud::PtrtransformPointCloud(pcl::PointCloud::PtrcloudIn,PointTypePose*
- 【SLAM】在WSL中搭建环境(Linux子系统)
o0o_-_
SLAMslamWSLopencvg2oeigen
目录说在前面linux子系统安装换源安装主要库测试一下说在前面windows版本:win10linux:ubuntu18.0.4SLAM学习:视觉SLAM十四讲-高翔pdf、对应github源码其他:懒得装双系统了,突然想起windows的linux子系统挺强的,就来试试;想直接在windows下搞,但是装个g2o还得搞qt,太麻烦2019.8.23补充:目前WSL好像并不支持USB设备,也就是说
- SLAM学习笔记2
FOFI
笔记分两部分:1.SLAM基本框架2.用cmake编译cpp源文件SLAM基本框架SLAM要解决两个问题:定位和建图。一个基本的SLAM框架包括:传感器信息读取,视觉里程计,后端优化,回环检测和建图。视觉里程计称为整个框架的前端,它的任务是估算相邻图像中相机的运动轨迹,构建局部地图。由于估算会有误差积累(累计漂移)导致估算的轨迹不再准确,这时候需要回环检测负责把“机器人回到原始位置”的事情检测出来
- 视觉slam学习|基础篇02
David小伟同学
SLAM学习
系列文章目录SLAM基础篇01SLAM基础篇02目录系列文章目录计算机视觉基础相机模型像素坐标归一化坐标畸变双目相机模型计算机中图像的表示非线性优化基础slam问题建模非线性最小二乘一阶和二阶梯度法Gauss-Newton法Levenberg-Marquant方法小结计算机视觉基础SLAM中使用的相机与我们平时见到的单反摄像头并不是同一个东西。它往往更加简单,不携带昂贵的镜头,以一定速率拍摄周围的
- 视觉SLAM学习笔记(二)
Sunshine_晗晗
视觉里程计前边我省略了大量用数学知识来描述的内容,比如三维世界中刚体运动的描述方式,包括旋转矩阵,旋转向量,欧拉角,四元数等,但是我们在下边仍然要去自己学习。视觉里程计的主流方法是特征点法,顾名思义,即从图像中选取比较有代表性的点,观察各个图像中这些点的位置来判断物体的移动。下面只介绍几种常用的特征点。ORB特征匹配ORB特征由关键点和描述子组成,提取ORB特征分为以下几个步骤:FAST角点提取,
- 自动驾驶——【规划】记忆泊车特殊学习路径拟合
Jack Ju
自动驾驶算法自动驾驶学习机器学习
1.Background如上图,SLAM学习路线Start到End路径,其中曲线SDAB为D档位学习路径,曲线BC为R学习路径,曲线AE为前进档D档学习路径。为了使其使用记忆泊车时,其驾驶员体验感好,需去除R档倒车部分轨迹,并拟合一条可用的曲线2.AlgorithmIntroductionD点作为起点,D(XD,YD,theta_D),C点作为终点(XC,YC,theta_C),使用y=a0+a1
- 视觉SLAM学习笔记2——centos7与ubuntu20.04下eigen库的安装与基本操作
隔壁老王的学习日志
SLAM学习学习矩阵算法ubuntuc++
视觉SLAM学习笔记2——centos7与ubuntu20.04下eigen库的安装与基本操作内容来源eigen库的安装centos7系统ubuntu系统CMakeLists.txt编辑eigenMatrix.cpp编辑kdevelop编译运行eigen库的基本语句内容来源本文内容来自本人早期的b站专栏:专栏文章eigen库的安装centos7系统wgethttps://gitlab.com/li
- SLAM学习之Eigen基础矩阵表示
vigigo
c++SLAMslamc++
#include#include•旋转矩阵(3×3):Eigen::Matrix3d。•旋转向量(3×1):Eigen::AngleAxisd。•欧拉角(3×1):Eigen::Vector3d。•四元数(4×1):Eigen::Quaterniond。•欧氏变换矩阵(4×4):Eigen::Isometry3d。•仿射变换(4×4):Eigen::Affine3d。•射影变换(4×4):Eige
- SLAM学习笔记4
FOFI
在SLAM中常需要估计一个相机的位置和姿态,这是个优化问题,需要对相机位姿求导,而李代数可以方便地表示相机位姿的导数。本笔记记录李群SO(3),SE(3)和李代数so(3),se(3)的对应关系以及李代数的求导表示。最后是李代数的编程练习。老规矩,手写拍照...李群与李代数1.jpg李群与李代数2.jpg李群与李代数3.jpgSophus编程练习Sophus可以下载github源码然后cmake编
- 【SLAM学习笔记1】欧拉角之万向锁问题(Gimbal Lock)
Jay_z在造梦
VSLAM入门
文章目录前言一、欧拉角1.欧拉角是什么?2.使用欧拉角的优缺点二、万向锁问题的预备知识1.Gimbal(平衡架)2.相关术语三、万向锁问题1.GimbalLock(万向锁问题)的现象2.GimbalLock(万向锁问题)出现的原因3.如何避免万向锁问题?四、Reference前言之前看视觉SLAM14讲时,看到欧拉角的万向锁问题,当时没搞懂,这两天突然又看到这个问题,看了很多帖子和动画,其实大家讲
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST