- 【python与机器学习3】感知机和门电路:与门,或门,非门等
奔跑的犀牛先生
机器学习python
目录1电子和程序里的与门,非门,或门,与非门,或非门,异或门1.1基础电路1.2所有的电路情况1.3电路的符号1.4各种电路对应的实际电路图2各种具体的电路2.1与门(andgate)2.1.1定义:A&B/AandB2.1.2andgate的写法2.1.3逻辑展开2.1.4电路图形2.1.5python里代码2.2或门(orgate)2.2.1定义2.2.2写法2.2.3逻辑展开2.2.4电路图
- python与机器学习2,激活函数
奔跑的犀牛先生
机器学习人工智能
目录1什么是激活函数?activationfunction1.1阈值1.2激活函数a(x),包含偏置值θ1.3激活函数a(x),包含偏置值b2激活函数1:单位阶跃函数2.1函数形式2.2函数图形2.3函数特点2.4代码实现这个单位阶跃函数3激活函数2sigmoid函数3.1函数形式3.2函数图形3.3函数特点3.3.1是一个连续函数,且是一个渐变的曲线3.3.2是连续区间的[0,1],可以天然等价
- 周四 2020-05-28 23:40 - 05:30 阴 11h40m
么得感情的日更机器
2020-5-28:高锟,光纤之父,壮年工程,老年高校教书育人。一时间记录0:005:30休息-睡觉5:305:305:503-日常-学习强国0:205:506:002-英语2-阅读0:106:006:372-技能-时间管理-日总结0:376:377:18饭早10:417:187:382-技能-时间管理-日总结0:207:389:292-编程工具-python与机器学习1:519:2910:131
- 【Python与机器学习 5-4】集成学习 Ensemble learning
zxfhahaha
机器学习python机器学习
集成学习(Ensemblelearning)通过构建并结合多个学习器来完成学习任务好的集成,个体学习器应“好而不同”:个体学习器要有一定的“准确性”,并且还要有“多样性”。集成学习分类集成学习可以分成同质集成和异质集成两大类。同质集成集成中包含同种类型的学习器->“基学习器”(baseleaner)异质集成集成中包含不同类型的学习器->“组件学习器”(componentleaner)集成策略首先来
- python与机器学习1,机器学习的一些基础知识概述(完善ing)
奔跑的犀牛先生
python机器学习
目录1AI,ML,DL,NN等等概念分类1.1人工智能、机器学习、深度学习、神经网络之间的关系:1.2人工智能的发展2ML机器学习的分类:SL,USL,RL2.1机器学习的分类2.2具体的应用举例2.3数据分类3关于阈值θ和偏移量b的由来4不同的激活函数5关于回归6关于分类7关于误差和梯度下降8最小二乘法修改θ9和矩阵计算,矩阵内积点乘的关系10深度学习11参考书籍1AI,ML,DL,NN等等概念
- Python与机器学习库Scikit-learn实战
心梓知识
python机器学习scikit-learn
Python是一种高级编程语言,拥有丰富的库和工具,使其成为机器学习领域中最受欢迎的语言之一。Scikit-learn是机器学习的一个开源Python库,它提供了许多算法和工具,可以帮助我们进行数据挖掘和机器学习。在本文中,我们将介绍Python和Scikit-learn的一些基础知识,并展示如何使用这两种工具进行机器学习实战。一、Python基础Python是一种解释性、跨平台的高级编程语言,支
- 《Python与机器学习实战》——第一章
皮皮大
第一章主要是个导论,在里面介绍了个简单的利用机器学习预测房价的栗子:数据预处理导入相关的模块和包,主要是numpy、pandas和matplotlib.pyplot。获取到两列关键的数据:size和price将size标准化处理标准化处理数学公式:做出size和price的散点图#导入相关的库importnumpyasnpimportpandasaspdimportmatplotlib.pyplo
- Python与机器学习:入门与基础
天天进步2015
机器学习pythonpython机器学习开发语言
机器学习是人工智能领域中一项重要的技术,而Python作为一种简单易用且功能强大的编程语言,成为了机器学习领域中的热门工具。本文将介绍Python与机器学习的基础知识,包括Python的优势、常用的机器学习库以及基本的机器学习算法。一、Python的优势:Python作为一种解释型语言,具有许多优势,使其成为机器学习领域的首选工具之一。1.简单易用:Python语法简洁清晰,易于学习和理解。即使是
- Python为什么成为人工智能的首选语言
王荣胜z
前言之前一直都是在学习Python与机器学习,深度学习。但是究竟为什么在众多的编程语言中选择Python作为人工智能的首选语言呢我一直不得而知,今天就来以我的理解来梳理下吧。首先在我不再赘述Python的前世今生,只是深入的说一下Python与人工智能的关系。一、从人工智能说起首先人工智能话题的热度再度升起应该是开始于一个引发全民狂欢的科技新闻:2016年到2017年,谷歌开发的围棋AI程序Alp
- 价值7000元的AI培训资料,拿走不谢
Nstream
这是我去年杭州培训的AI资料,价值7000元,包括tensorflow,keras实战源码,深度学习经典pdf书籍,知识图谱,规则引擎等,还有超全ppt,直接上图,给你惊喜。123关注我,私信发给你,或者搜索微信公众号“python与机器学习那点事”,后台回复”培训“,获取网盘连接
- python与机器学习
Bill_cc74
入门一、理念梳理python学习,边学边练,库准备学会找资源找数据:githubkaggle天池机器学习的数学学习算法的数学公式推导及应用二、何谓机器学习1、数据收集与预处理问题:如何收集数据(爬虫入门)数据预处理需要做哪些工作?2、特征选择与模型构建:问题定义及特征选取3、评估与预测:定性还是定量?如何改进?
- Python机器学习实践(一)多项式拟合(简单房价预测)
AiTingDeTong
Python机器学习python机器学习人工智能数据分析
Python机器学习学习笔记与实践环境:win10+Anaconda3.8例子一源自《Python与机器学习实战》—何宇健任务:现有47个房子的面积和价格,需要建立一个模型对房价进行预测。1、获取和处理数据房子的面积与价格对应的数据点击下面获得:点击此处获取导入库,并读取文本文件的数据:importnumpyasnpimportmatplotlib.pyplotasplt#读取房子面积和对应的价格
- python 多分类模型优化_【Python与机器学习】:利用Keras进行多类分类
weixin_39998462
python多分类模型优化
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多。这里我们利用Keras机器学习框架中的ANN(artificialneuralnetwork)来解决多分类问题。这里我们采用的例子是著名的UCIMachineLearningRepository中的鸢尾花数据集(irisflowerdataset)。1.编码输出便签多类分类问题与二类分类问题类似,需要将类别变量(catego
- python ai 项目_汇总!AI开发者必备的Python与机器学习开源项目推荐
庄比
pythonai项目
AIRX团队整理TensorFlowTensorFlow是一个端到端的机器学习开源平台。由工具、库和社区资源组成的全面、灵活的生态系统,使开发人员能够轻松地构建和部署基于ML的应用程序。TensorFlow最初是由谷歌机器智能研究组织的谷歌大脑团队的研究人员和工程师开发的,用于进行机器学习和深度神经网络研究。该系统具有足够的通用性,可以广泛应用于其他领域。Scikit-learnScikit-le
- Github上Top20 Python与机器学习开源项目推荐
AIRX三次方
AIRX自然语言处理深度学习机器学习tensorflowcaffe
以下内容由公众号:AIRX社区(国内领先的AI、AR、VR技术学习与交流平台)整理TensorFlowTensorFlow是一个端到端的机器学习开源平台。由工具、库和社区资源组成的全面、灵活的生态系统,使开发人员能够轻松地构建和部署基于ML的应用程序。TensorFlow最初是由谷歌机器智能研究组织的谷歌大脑团队的研究人员和工程师开发的,用于进行机器学习和深度神经网络研究。该系统具有足够的通用性,
- python和机械结合_《Python与机器学习》笔记(8)
weixin_39802020
python和机械结合
无监督学习1.基于聚类的“图像分割”实例编写图像分割图像分割:利用图像的灰度、颜色、纹理、形状等特征,把图像分成若干个互不重叠的区域,并使这些特征在同一区域内呈现相似性,在不同的区域之间存在明显的差异性。然后就可以将分割的图像中具有独特性质的区域提取出来用于不同的研究。图像分割技术已在实际生活中得到广泛的应用。例如:在机车检验领域,可以应用到轮毂裂纹图像的分割,及时发现裂纹,保证行车安全;在生物医
- python自然语言处理评论_python与机器学习入门(10)NLP自然语言处理大量餐馆评论...
weixin_39640221
python自然语言处理评论
1.NLP是什么自然语言处理用于对文本的分类用于对中英文的互相翻译用于打字时候的自动纠错垃圾邮件过滤......1.1本次的目标这次学习是1000个英文的对一餐馆的评价,以及手动分类的结果,看一下是正面还是负面的评价。用NLP算法自动辨别评价的好坏,当在拿到一个评价时,就可以自动进行好坏的分类了。这次要做的就是对评论就行分类,完成以后可以拓展到文本文章英文报道等进行应用。1.2观察数据打开评论的t
- python与机器学习降维:PCA实现高维数据可视化和NMF人脸数据特征提取
Cachel wood
python机器学习和数据挖掘pythonsklearn机器学习
PCA实现高维数据可视化#建立工程,导入sklearn相关工具包importmatplotlib.pyplotaspltfromsklearn.decompositionimportPCAfromsklearn.datasetsimportload_iris#加载数据并进行降维data=load_iris()y=data.targetX=data.datapca=PC
- 朴素贝叶斯和SVM
king52113141314
机器学习入门概率论机器学习分类
朴素贝叶斯决策:详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解_nebulaf91的博客-CSDN博客_最大后验估计如何简单理解贝叶斯决策理论(BayesDecisionTheory)?-知乎参数估计|Python与机器学习如何通俗地理解概率论中的「极大似然估计法」?-知乎SVM:机器学习实战教程(八):支持向量机原理篇之手撕线性SVM支持向量机:OutliersTh
- 卷积神经网络识别车辆(自建+迁移学习)
Asionm
人工智能神经网络深度学习人工智能
卷积神经网络识别车辆(迁移模型)此为本人Python与机器学习第一学期大作业技术文档,在此分享给大家!源代码见个人的资源处,已经上传到CSDN卷积神经网络识别车辆卷积神经网络识别车辆(迁移模型)模型介绍resnet50自建模型程序介绍编程详细模型讨论模型训练参数的选择loss值随epoch次数的变化曲线resnet50自建立模型参数改变的讨论模型准确率模型采用的提高准确率的技术模型介绍对于模型的选
- python与机器学习
AI小丸子
Pythonpython机器学习人工智能
机器学习数据挖掘、CV、NLP、语音识别、统计学习、模式识别套路:1.数据收集处理;2.特征选择与模型构建;3.评估与预测站点:kagglegithubpython库科学计算库numpypandas线性回归例子:工资x1、年龄x2、贷款额度y关系关系:;预测一个值,这个值有区间。工资和年龄是特征;贷款额度是目标或者标签;拟合一个面分割的过程;y=a+b*x1+c*x2;a偏置参数对结果影响小;bc
- Python与机器学习之优化算法
为了更好的明天
Python与数据分析python机器学习
Python与机器学习之优化算法回顾圣经,在监督学习中优化算法是关键的步骤——分析模型并得到最优模型,才是最终的目的。基于梯度下降的学习对于一个简单的机器学习算法,每一个样例包含了一个(x,y)对,其中输入x和一个数值输出y。我们考虑损失函数l(y^,y),它描述了预测值y^和实际值y之间的损失。预测值是我们选择从一函数族F中选择一个以w为参数的函数fw(x)的到的预测结果。我们的目标是寻找这样的
- 【CSDN软件工程师能力认证学习精选】如何入门Python与机器学习
高校俱乐部
CSDN软件工程师能力认证C5机器学习python
CSDN软件工程师能力认证(以下简称C系列认证)是由中国软件开发者网CSDN制定并推出的一个能力认证标准。C系列认证历经近一年的实际线下调研、考察、迭代、测试,并梳理出软件工程师开发过程中所需的各项技术技能,结合企业招聘需求和人才应聘痛点,基于公开、透明、公正的原则,甑别人才时确保真实业务场景、全部上机实操、所有过程留痕、存档不可篡改。我们每天将都会精选CSDN站内技术文章供大家学习,帮助大家系统
- python与机器学习(七)下——torchvision预训练模型测试真实图像分类
zhaociTang
python与机器学习python计算机视觉pytorch机器学习
任务要求:利用torchvision中的预训练CNN模型来对真实的图像进行分类,预测每张图片的top5类别。数据:real_image,class_index.json导入:importtorchfromtorchvisionimportmodels,datasets,transformsfromtorch.utils.dataimportDataLoader,DatasetfromPILimpo
- python与机器学习(七)上——PyTorch搭建LeNet模型进行MNIST分类
zhaociTang
python与机器学习pythonpytorch神经网络机器学习
任务要求:利用PyTorch框架搭建一个LeNet模型,并针对MNIST数据集进行训练和测试。数据集:MNIST导入:importtorchfromtorchimportnn,optimfromtorch.autogradimportVariablefromtorch.nnimportfunctionalasFfromtorchvisionimportdatasets,transformsfrom
- python与机器学习(六)——支持向量机(SVM) && 多层感知机(MLP)
zhaociTang
python与机器学习pythonsvmmlp支持向量机机器学习
在这次实验中,我们将尝试提取基本的图像特征并利用支持向量机或多层感知机算法对提取的特征进行图像分类。导入:importnumpyasnpimportmatplotlibfromscipy.ndimageimportuniform_filter数据加载:#读取提供的cifar10-mini数据集,data=np.load('cifar10-mini.npz')X_train=data['X_trai
- python与机器学习(五)——决策树
zhaociTang
python与机器学习python机器学习决策树
决策树(DecisionTree)通过sklearn库的决策树模型对iris数据进行多分类,并进行结果评估导入:fromsklearn.treeimportDecisionTreeClassifierfromsklearn.datasetsimportload_irisfromsklearnimportdatasetsfromsklearn.datasetsimportload_breast_ca
- python与机器学习(三)——真正(负)率 / 假正(负)例 / ROC / AUC
zhaociTang
python与机器学习python机器学习数据分析
读取data.csv文件数据完成:1.分别计算真正例(TP)、真负例(TN)、假正例(FP)、假负例(FN)数量2.分别计算各类别(正/负例)的精确率(Precision)、召回率(Recall)、F1值(F1-score)3.分别计算精确率、召回率、F1-score的宏平均(MacroAverage)并且计算准确率(Accuracy)4.绘制ROC曲线并计算曲线下面积AUC(可使用sklearn
- python与机器学习(二)Numpy / Pandas /矩阵相乘速度对比
zhaociTang
python与机器学习python机器学习pandasnumpy
NumPy(NumericalPython)是Python语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy的官方文档:https://numpy.org/doc/stable/reference/index.htmlPandas是一个强大的分析结构化数据的工具集,它的使用基础是NumPy(提供高性能的矩阵运算),用于数据挖掘和数据分析,同时也提
- python与机器学习入门
zzhetao
Python实例
1、Anaconda的安装与使用。2、第一个机器学习样例:(1.3.1获取与处理数据)#导入需要用到的库importnumpyasnpimportmatplotlib.pyplotasplt#定义存储输入数据(x)和目标数据(y)的数组x,y=[],[]#遍历数据集,变量sample对应的正是一个个样本forsampleinopen("D:/1/_Data/prices.txt","r"):#“/
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。