- 概率图模型(PGM)综述
医学影像处理
概率图模型概率图模型综述
RefLink:http://www.sigvc.org/bbs/thread-728-1-1.htmlGraphicalModel的基本类型基本的GraphicalModel可以大致分为两个类别:贝叶斯网络(BayesianNetwork)和马尔可夫随机场(MarkovRandomField)。它们的主要区别在于采用不同类型的图来表达变量之间的关系:贝叶斯网络采用有向无环图(DirectedAc
- 【机器学习】近似推断的基本概念以及变分贝叶斯的基本概念
Lossya
机器学习人工智能python贝叶斯网络变分贝叶斯近似推断
引言近似推断是处理大规模或复杂概率图模型时常用的一种方法,特别是在精确推断变得不可行或不实际的情况下文章目录引言一、近似推断1.1常见的近似推断方法1.1.1采样方法(SamplingMethods)1.1.1.1马尔可夫链蒙特卡洛(MCMC)1.1.1.2重要性采样(ImportanceSampling)1.1.1.3蒙特卡洛模拟(MonteCarloSimulation)1.1.2变分推断(V
- 机器学习---概率图模型(概率计算问题)
三月七꧁ ꧂
机器学习机器学习人工智能
1.直接计算法给定模型和观测序列,计算观测序列O出现的概率。最直接的方法是按概率公式直接计算.通过列举所有可能的长度为T的状态序列,求各个状态序列I与观测序列的联合概率,然后对所有可能的状态序列求和,得到。状态序列的概率是对固定的状态序列,观测序列的概率是。,O和I同时出现的联合概率为。然后,对所有可能的状态序列I求和,得到观测序列O的概率,即但是,利用公式计算量很大,是阶的,这种算法不可行。2.
- 机器学习---学习与推断,近似推断、话题模型
三月七꧁ ꧂
机器学习机器学习学习人工智能
1.学习与推断基于概率图模型定义的分布,能对目标变量的边际分布(marginaldistribution)或某些可观测变量为条件的条件分布进行推断。对概率图模型,还需确定具体分布的参数,称为参数估计或学习问题,通常使用极大似然估计或后验概率估计求解。单若将参数视为待推测的变量,则参数估计过程和推断十分相似,可以“吸收”到推断问题中。假设图模型所对应的变量集x={x1,x2,···,xn}能分为XE
- 机器学习---概率图模型(隐马尔可夫模型、马尔可夫随机场、条件随机场)
三月七꧁ ꧂
机器学习机器学习人工智能
1.隐马尔可夫模型机器学习最重要的任务是根据已观察到的证据(例如训练样本)对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型(probabilisticmodel)提供了一种描述框架,将描述任务归结为计算变量的概率分布,在概率模型中,利用已知的变量推测未知变量的分布称为“推断(inference)”,其核心在于基于可观测的变量推测出未知变量的条件分布。生成式:计算联合分布(,,),判别式:
- 白铁时代 —— (监督学习)原理推导
人生简洁之道
2020年-面试笔记人工智能
来自李航《统计学习方法》文章目录-1指标相似度0概论1优化类1.1朴素贝叶斯1.2k近邻-kNN1.3线性判别分析二分类LDA多分类LDA流程LDA和PCA的区别和联系1.4逻辑回归模型&最大熵模型逻辑回归最大熵模型最优化1.5感知机&SVM感知机SVM线性可分SVM线性不可分SVM对偶优化问题&非线性SVM序列最小优化算法SMO1.7概率图模型EM算法EM算法的导出和流程应用举例:高斯混合模型(
- NLP系列学习:CRF条件随机场(1)
云时之间
大家好,今天让我们来看看条件随机场,条件随机场是一项大内容,在中文分词里广泛应用,因为我们在之前的文章里将概率图模型和基本的形式语言知识有所了解,当我们现在再去学习条件随机场会容易比较多(在动笔写这篇文章前我也翻阅了很多的博客,发现很多博主上来就讲一大堆核心公式,而之前的铺垫知识都很少提,我觉得这不太好,会让很多人一开始就懵).而我希望在我的这几篇文章尽可能的减少单纯理论知识的复述,而是通过一些实
- HMM隐马尔可夫模型和维特比算法
Y·Not·Try
NLPHMM维特比算法自然语言处理算法机器学习
前言一、HMM的构成二、HMM的基本假设1.齐次马尔可夫假设2.观测独立假设3.参数不变性假设三、HMM的参数学习(监督学习)四、参数学习的代码思路五、维特比算法六、维特比算法代码思路总结前言隐马尔可夫模型是关于时序的概率图模型,属于生成模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。隐马尔可夫模型常用来处理诸如分词,词性标注,命名
- 8、VAE:变分自编码器
O_meGa
AIGC论文笔记深度学习人工智能计算机视觉深度学习
目录一、背景与动机二、创新与卖点三、实现细节VAE模型架构损失函数VAE的背后的数学原理简易代码四、总结一、背景与动机在深度学习领域,数据的有效表示和生成模型一直是研究的重点。VAE,即变分自编码器(VariationalAuto-Encoder),正是在这种背景下应运而生的前沿技术。它结合了自编码器和概率图模型的优点,旨在解决高维复杂数据的高效表示和生成问题。VAE最想解决的问题是什么?首先是如
- 图像生成之变分自动编码器(VAE)
Wilson_Hank
机器学习人工智能
简要介绍“概率图模型+神经网络”、“EM算法、变分推断”自动编码器是一种无监督学习方法,将高维的原始数据映射到一个低维特征空间,然后从低维特征学习重建原始的数据。变分自编码器(VariationalAutoencoder,简称VAE)是一种生成模型,结合了自编码器和概率图模型的思想。VAE在建模生成模型时是显式地定义了条件概率分布,通过最大似然估计来学习生成模型的参数,使其能够生成与训练数据相似的
- 【机器学习】条件随机场
十年一梦实验室
机器学习人工智能
一、马尔可夫随机场1.1概率图模型什么是有向图模型和无向图模型?https://www.jianshu.com/p/dabbc78471d7团、极大团、最大团-简书(jianshu.com)1.2马尔可夫随机场二、条件随机场概述2.1条件随机场简介条件随机场(ConditionalRandomField,简称CRF)是一种用于序列标注(sequencelabeling)的概率模型。它是马尔可夫随机
- .【机器学习】隐马尔可夫模型(Hidden Markov Model,HMM)
十年一梦实验室
机器学习人工智能
概率图模型是一种用图形表示概率分布和条件依赖关系的数学模型。概率图模型可以分为两大类:有向图模型和无向图模型。有向图模型也叫贝叶斯网络,它用有向无环图表示变量之间的因果关系。无向图模型也叫马尔可夫网络,它用无向图表示变量之间的相关关系。概率图模型可以用于机器学习,人工智能,自然语言处理,计算机视觉,生物信息学等领域。一、马尔科夫模型随机过程马尔科夫过程马尔科夫链状态转移矩阵通过训练样本学习得到,采
- EM算法及公式推导
XI-C-Li
概率图模型算法机器学习人工智能
含隐变量的概率图模型的参数估计问题在解决含隐变量的概率图模型的参数估计问题时,一种简单的想法是取使其对数边际似然最大的作为估计的参数。为观测变量的观测数据,是一个向量,为隐变量的取值(但实际上无法观测)是一个向量,需要通过求和(积分)的形式去除。但函数中存在对数函数内部带有求和的形式,这样非常难以求导。比如在高斯混合模型中,隐变量是一维离散的变量。12......k......其中均是待估计参数,
- 模式识别与机器学习-概率图模型
Kilig*
机器学习机器学习人工智能
模式识别与机器学习-概率图模型概率图模型三大基本问题表示推断学习有向概率图模型例子三种经典的图HMMViterbi算法谨以此博客作为复习期间的记录概率图模型三大基本问题概率图模型通常涉及三个基本问题,即表示(Representation)、推断(Inference)和学习(Learning)。这三个问题是概率图模型中关键的核心概念。表示(Representation):表示问题涉及选择合适的图结构
- 【多传感器融合导航论文阅读】
今天我刷leetcode了吗
论文阅读学习方法
多传感器融合导航论文积累知识点总结因子图一致因子图文献阅读笔记[IF18.6]知识点总结因子图FactorGraph是概率图的一种,是对函数因子分解的表示图,一般内含两种节点,变量节点和函数节点。因子图存在着:两类节点:变量节点和对应的函数节点变量节点所代表的变量是函数节点的自变量。同类节点之间没有边直接相连。一致因子图一致性指的是在该框架中能够保持一致性地更新变量的值,使得整个概率图模型中的变量
- VAE变分自编码器原理推导+Python代码实现
篝火者2312
机器学习人工智能笔记python机器学习开发语言深度学习
1、前言变分自编码器是近些年较火的一个生成模型,我个人认为其本质上仍然是一个概率图模型,只是在此基础上引入了神经网络。本文将就变分自编码器(VAE)进行简单的原理讲解和数学推导。2、引入2.1、高斯混合模型生成模型,可以简单的理解为生成数据(不止,但我们暂且就这么理解它)\boxed{(不止,但我们暂且就这么理解它)}(不止,但我们暂且就这么理解它)。假如现在我们有样本数据,而我们发现这些样本符合
- 优化概率神经网络_用约束规划+概率图模型(信念传播)+神经网络端到端求解组合优化问题...
weixin_39849671
优化概率神经网络
Idea半成品,现在不做了,分享下(尾附资料库和代码)~主要技术点:用约束规划+概率图模型(信念传播)+神经网络端到端求解问题,生成一个关于变量的N*M矩阵,N是变量个数,M是变量取值集合的大小,矩阵元素代表某变量取某元素的信念,根据这个矩阵可自然读出解(如果不满足约束的情况实在太严重,就进一步加primal-dualunrolledoptimization、启发式搜索、分支定界等后处理机制):《
- 用约束规划+概率图模型(信念传播)+神经网络端到端求解组合优化问题
Monte0539
深度学习神经网络
主要技术点:用约束规划+概率图模型(信念传播)+神经网络端到端求解问题,生成一个关于变量的N*M矩阵,N是变量个数,M是变量取值集合的大小,矩阵元素代表某变量取某元素的信念,根据这个矩阵可自然读出解(如果不满足约束的情况实在太严重,就进一步加primal-dualunrolledoptimization、启发式搜索、分支定界等后处理机制):《BeliefPropagationNeuralNetwo
- 概率图模型(PGM):贝叶斯网(Bayesian network)初探
虫小宝
1.从贝叶斯方法(思想)说起-我对世界的看法随世界变化而随时变化用一句话概括贝叶斯方法创始人ThomasBayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度。1763年,民间科学家ThomasBayes发表了一篇名为《Anessaytowardssolvingaprobleminthedoctrineofchance
- 【AI】人工智能爆发推进器之变分自动编码器
giszz
人工智能学习笔记人工智能
一、变分自动编码器(VAE)变分自动编码器(VariationalAutoencoder,简称VAE)是一种生成式模型,属于深度学习领域中的一种重要技术。它通过结合深度学习和概率图模型的思想,能够学习到数据分布的潜在表示,并生成新的数据样本。变分自动编码器是一种基于变分贝叶斯方法的深度学习模型,用于学习数据分布的潜在表示。它通过最大化数据的对数似然下界(ELBO)来学习数据生成过程。VAE由两部分
- 机器学习 (第9章 概率图模型)
komjay
机器学习人工智能
一、学习目标1.学习概率图模型中两种重要的模型:贝叶斯网络和马尔科夫随机场2.学习使用概率图模型去进行实际问题的学习与推断3.学习近似推断二、贝叶斯网络概率图模型基于图,而图这种数据结果分为两种:有向图和无向图,针对有向(无环)图结构,实现的是贝叶斯网络,针对无向图,则为马尔可夫随机场。1.有向无环图根据图中每个结点不同,可提取出不同的相关结点,如以x3为例2.联合概率分布我们之所以搞出这么一个图
- Arxiv网络科学论文摘要17篇(2020-09-02)
ComplexLY
理解在线社会网络衰退动力学的理论模型;强关系对之间的内部迁移和移动通信模式;国际关系中联盟与竞争网络的结构平衡;金融网络中的或然可转换债券;当代价高昂的惩罚逐渐演变为有利时;可见度有限的多数投票模型:对滤泡的调查;基于增强学习的黑盒规避攻击进行动态图中的链路预测;基于概率图模型和递归神经网络的语义情感分析;网络增长模型中节点影响的动态;社交用户的前k位社交-空间协同参与位置选择;利用网络分析探索农
- 机器学习 | 概率图模型
西皮呦
机器学习机器学习人工智能
见微知著,睹始知终。见到细微的苗头就能预知事物的发展方向,能透过微小的现象看到事物的本质,推断结论或者结果。概率模型为机器学习打开了一扇新的大门,将学习的任务转变为计算变量的概率分布。实际情况中,各个变量间存在显式或隐式的相互依赖,如朴素贝叶斯方法直接基于训练数据去求解变量的联合概率分布在时间复杂度还是空间复杂度均是不可行、不划算的。直接基于训练数据求解变量联合概率分布困难。Probabilist
- 自然语言处理之概率图模型--预备知识
罗宇翔
概述本章将介绍一些概率论、图、信息论、马尔可夫等相关基础知识,这些知识点将会贯穿于概率图多个模型的讲解中,在相应模型篇章的开头,也会再次列出这些基础知识。概率论联合概率两个及以上随机变量image.png,可以用联合概率分布image.png描述其各个状态的概率,简称为联合概率分布。根据随机变量的不同,联合概率分布的表示形式也不同。对于离散型随机变量,联合概率分布可以以列表的形式表示,也可以以函数
- python 大数据 选题推荐
L学长
一、python毕设选题推荐以下为学长手动整理python毕业设计项目,完全可以作为当前较新的毕业设计题目选择方向,给各位同学参考项目分享,毕设指导:https://gitee.com/yaa-dc/BJH/blob/master/gg/python/README.md1基于MapReduce的气候数据的分析2基于关键词的文本知识的挖掘系统的设计与实现3基于概率图模型的蛋白质功能预测4基于第三方库
- 贝叶斯网络 (人工智能期末复习)
倒杯Whisky
人工智能人工智能贝叶斯网络D分离法条件概率表贝叶斯网络独立性
文章目录贝叶斯网络(概率图模型)定义主要考点例题-要求画出贝叶斯网络图-计算各节点的条件概率表-计算概率-分析独立性贝叶斯网络(概率图模型)定义一种简单的用于表示变量之间条件独立性的有向无环图(DAG)。主要考点给出一定表述,要求画出贝叶斯网络图;给出每个节点的条件概率表;使用贝叶斯网络计算概率;分析贝叶斯网络的独立性;例题-要求画出贝叶斯网络图臭鸡蛋(E)或灾难后动物的尸体(M)都会发出一种奇怪
- 贝叶斯网络在R语言中的应用
CodeMaven
r语言开发语言R语言
贝叶斯网络是一种概率图模型,用于建模变量之间的依赖关系。它在许多领域都有广泛的应用,包括机器学习、人工智能和统计分析等。本文将介绍如何在R语言中使用贝叶斯网络进行建模和推断,并提供相应的源代码示例。首先,我们需要安装并加载相关的R包。在R中,有几个包可以用于构建和分析贝叶斯网络,如bnlearn和gRain等。这里我们以bnlearn包为例进行说明。#安装bnlearn包install.packa
- VAE模型及pytorch实现
Miracle Fan
生成模型计算机视觉pytorch人工智能python计算机视觉深度学习
VAE模型及pytorch实现VAE模型推导部分最小化KL散度推导代码部分损失函数Encoder部分Decoder部分VAE整体架构VAE问题参考资料VAE(变分自编码器)是一种生成模型,结合了自编码器和概率图模型的思想。它通过学习数据的潜在分布,可以生成新的数据样本。VAE通过将输入数据映射到潜在空间中的分布,并在训练过程中最大化数据与潜在变量之间的条件概率来实现。其关键思想在于编码器将输入数据
- 【深度学习】概率图模型(二)有向图模型详解(条件独立性、局部马尔可夫性及其证明)
QomolangmaH
深度学习人工智能贝叶斯网络局部马尔可夫性条件独立性概率图
文章目录一、有向图模型1.贝叶斯网络的定义2.条件独立性及其证明a.间接因果关系X3→X2→X1X_3\rightarrowX_2\rightarrowX_1X3→X2→X1b.间接果因关系X1→X2→X3X_1\rightarrowX_2\rightarrowX_3X1→X2→X3c.共因关系X1←X2→X3X_1\leftarrowX_2\rightarrowX_3X1←X2→X3d.共果关系
- 【深度学习】概率图模型(一)概率图模型理论简介
QomolangmaH
深度学习深度学习概率论人工智能概率图模型贝叶斯网络马尔可夫随机场
文章目录一、概率图模型1.联合概率表2.条件独立性假设3.三个基本问题二、模型表示1.有向图模型(贝叶斯网络)2.无向图模型(马尔可夫网络)三、学习四、推断 概率图模型(ProbabilisticGraphicalModel,PGM)是一种用图结构来表示和推断多元随机变量之间条件独立性的概率模型。图模型提供了一种直观且有效的方式来描述高维空间中的概率分布,通过图结构表示随机变量之间的关系,使得模
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul