SLAM后端--滤波方法和非线性优化方法

SLAM的后端一般分为两种处理方法,一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,一种是以图优化为代表的非线性优化方法。不过,目前SLAM研究的主流热点几乎都是基于图优化的。

滤波方法的优缺点:

优点:在当时计算资源受限、待估计量比较简单的情况下,EKF为代表的滤波方法比较有效,经常用在激光SLAM中。

缺点:它的一个大缺点就是存储量和状态量是平方增长关系,因为存储的是协方差矩阵,因此不适合大型场景。而现在基于视觉的SLAM方案,路标点(特征点)数据很大,滤波方法根本吃不消,所以此时滤波的方法效率非常低。

 

图优化:

历史:

       2008年左右,大家还都是用滤波方法,因为在图优化里,Bundle Adjustment(后面简称BA)起到了核心作用。但是那会SLAM的研究者们发现包含大量特征点和相机位姿的BA计算量其实很大,根本没办法实时。

       后来SLAM研究者们发现了其实在视觉SLAM中,虽然包含大量特征点和相机位姿,但其实BA是稀疏的,稀疏的就好办了,就可以加速了啊!比较代表性的就是2009年,几个大神发表了自己的研究成果《SBA:A software package for generic sparse bundle adjustment》,而且计算机硬件发展也很快,因此基于图优化的视觉SLAM也可以实时了!

概念:

        比如一个机器人在房屋里移动,它在某个时刻 t 的位姿(pose)就是一个顶点,这个也是待优化的变量。而位姿之间的关系就构成了一个边,比如时刻 t 和时刻 t+1 之间的相对位姿变换矩阵就是边,边通常表示误差项。

在SLAM里,图优化一般分解为两个任务:

1、构建图。机器人位姿作为顶点,位姿间关系作为边。

2、优化图。调整机器人的位姿(顶点)来尽量满足边的约束,使得误差最小。

例子:

       下面就是一个直观的例子。我们根据机器人位姿来作为图的顶点,这个位姿可以来自机器人的编码器,也可以是ICP匹配得到的,图的边就是位姿之间的关系。由于误差的存在,实际上机器人建立的地图是不准的,如下图左。我们通过设置边的约束,使得图优化向着满足边约束的方向优化,最后得到了一个优化后的地图(如下图中所示),它和真正的地图(下图右)非常接近。

SLAM后端--滤波方法和非线性优化方法_第1张图片

g2o:General Graphic Optimization

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(SLAM)