数学建模 原料

原料

X1

X2

X3

X4

X5

X6

X7

X8

方案一

2

5

3

3

2

1

3

1

剩余总根数

23

4

6

8

5

17

1

10

方案二

3

4

3

3

1

2

3

1

剩余总根数

10

15

6

8

16

6

1

10

方案三

3

5

2

2

2

2

3

1

剩余总根数

10

4

19

21

5

6

1

10

成品一中各原料的总根数分别为43,59,39,41,27,28,34,21,利用lingo可求出第一次搭配成品的最大捆数为11捆(单位根),然后用Matlab编程可得出有三种不同方案,则成品一各原料的分配方案如下表所示:

Lingo软件编程:

max=y;

3*x1+3.5*x2+4*x3+4.5*x4+5*x5+5.5*x6+6*x7+6.5*x8=89;

x1+x2+x3+x4+x5+x6+x7+x8=20;

y*x1<=43;

y*x2<=59;

y*x3<=39;

y*x4<=41;

y*x5<=27;

y*x6<=28;

y*x7<=34;

y*x8<=21;

@gin(x1);@bnd(0,x1,43);

@gin(x2);@bnd(0,x2,59);

@gin(x3);@bnd(0,x3,39);

@gin(x4);@bnd(0,x4,41);

@gin(x5);@bnd(0,x5,27);

@gin(x6);@bnd(0,x6,28);

@gin(x7);@bnd(0,x7,34);

@gin(x8);@bnd(0,x8,21);

@gin(y);

Matlab编程:

function y1

c=1;

for x1=0:43/11

    for x2=0:59/11

        for x3=0:39/11

            for x4=0:41/11

                for x5=0:27/11

                    for x6=0:28/11

                        for x7=0:34/11

                            for x8=0:21/11

                                k1=x1*3+x2*3.5+x3*4+x4*4.5+x5*5+x6*5.5+x7*6+x8*6.5;

                                k2=x1+x2+x3+x4+x5+x6+x7+x8;

                                if(k1==89)&(k2==20)

                                    fprintf('µÚ%dÖÖ \n %d,%d,%d,%d,%d,%d,%d,%d \n',c,x1,x2,x3,x4,x5,x6,x7,x8)

                                    c=c+1;

                                end

                            end

                        end

                    end

                end

            end

        end

    end

end

由最终讨论需要选择方案二,则成品一第一次搭配后各原料的剩余总根数分别为10,15,6,8,16,6,1,10,利用lingo可求出第二次搭配成品的最大捆数为3捆(单位根),然后用Matlab编程可得出有三种不同方案,则成品一剩余的原材料的分配方案如下表所示:

 

长度

3-3.4

3.5-3.9

4-4.4

4.5-4.9

5-5.4

5.5-5.9

6-6.4

6.5-6.9

方案一

3

4

2

2

5

2

0

2

剩余总根数

1

3

0

2

1

0

1

4

方案二

3

5

2

1

5

1

0

3

剩余总根数

1

0

0

5

1

3

1

1

方案三

3

5

2

2

3

2

0

3

剩余总根数

1

0

0

2

7

0

1

1

Lingo编程:

max=y;

3*x1+3.5*x2+4*x3+4.5*x4+5*x5+5.5*x6+6*x7+6.5*x8=89;

x1+x2+x3+x4+x5+x6+x7+x8=20;

y*x1<=10;

y*x2<=15;

y*x3<=6;

y*x4<=8;

y*x5<=16;

y*x6<=6;

y*x7<=1;

y*x8<=10;

@gin(x1);@bnd(0,x1,10);

@gin(x2);@bnd(0,x2,15);

@gin(x3);@bnd(0,x3,6);

@gin(x4);@bnd(0,x4,8);

@gin(x5);@bnd(0,x5,16);

@gin(x6);@bnd(0,x6,6);

@gin(x7);@bnd(0,x7,1);

@gin(x8);@bnd(0,x8,10);

@gin(y);

Matlab编程:

function y2

c=1;

for x1=0:10/3

    for x2=0:15/3

        for x3=0:6/3

            for x4=0:8/3

                for x5=0:16/3

                    for x6=0:6/3

                        for x7=0:1/3

                            for x8=0:10/3

                                k1=x1*3+x2*3.5+x3*4+x4*4.5+x5*5+x6*5.5+x7*6+x8*6.5;

                                k2=x1+x2+x3+x4+x5+x6+x7+x8;

                                if(k1==89)&(k2==20)

                                    fprintf('%d\n %d,%d,%d,%d,%d,%d,%d,%d\n',c,x1,x2,x3,x4,x5,x6,x7,x8)

                                    c=c+1;

                                end

                            end

                        end

                    end

                end

            end

        end

    end

end

由以上两次搭配后的剩余原料为12根,小于20,不满足约束条件,停止搭配。因此, 成品一的总捆数为z1=11+3=14。

综上,成品一的搭配方案如下表:

3-3.4

3.5-3.9

4-4.4

4.5-4.9

5-5.4

5.5-5.9

6-6.4

6.5-6.9

11捆

3

4

3

3

1

2

3

1

3捆

3

5

2

1

5

1

0

3

 

 

成品三第四次搭配后各原料的剩余总根数分别为4,5,3,11,1,0,3,7,8,10,28,1,7,4,0,16,0,2,0,6,0,0,0,1

利用lingo可求出第五次搭配成品的最大捆数为7捆(单位根),然后用Matlab编程可得出有四种不同方案,如下表所示:

原料

X23

X24

X25

X26

X27

X28

X29

X30

根数

0

0

0

1

0

0

1

0

剩余总根数

4

5

3

4

1

0

3

0

 

X31

X32

X33

X34

X35

X36

X37

X38

根数

1

0

2

0

0

0

0

0

剩余总根数

1

10

14

1

7

4

0

16

 

X39

X40

X41

X42

X43

X44

X45

X46

根数

0

0

0

0

0

0

0

0

剩余总根数

0

2

0

5

0

0

0

1

 

Lingo编程:

max=y;

14*x1+14.5*x2+15*x3+15.5*x4+16*x5+16.5*x6+17*x7+17.5*x8+18*x9+18.5*x10+19*x11+19.5*x12+20*x13+21*x15+21.5*x16+22*x17+22.5*x18+23*x19+23.5*x20+24*x21+24.5*x22+25*x23+25.5*x24=89;

x1+x2+x3+x4+x5+x6+x7+x8+x9+x11+x12+x13+x14+x15+x16+x17+x18+x19+x20+x21+x22+x23+x24=5;

y*x1<=4;

y*x2<=5;

y*x3<=3;

y*x4<=11;

y*x5<=1;

y*x6<=0;

y*x7<=3;

y*x8<=7;

y*x9<=8;

y*x10<=10;

y*x11<=28;

y*x12<=1;

y*x13<=7;

y*x14<=4;

y*x15<=0;

y*x16<=16;

y*x17<=0;

y*x18<=2;

y*x19<=0;

y*x20<=6;

y*x21<=0;

y*x22<=0;

y*x23<=0;

y*x24<=1;

@gin(x1);@bnd(0,x1,4);

@gin(x2);@bnd(0,x2,5);

@gin(x3);@bnd(0,x3,3);

@gin(x4);@bnd(0,x4,11);

@gin(x5);@bnd(0,x5,1);

@gin(x6);@bnd(0,x6,0);

@gin(x7);@bnd(0,x7,3);

@gin(x8);@bnd(0,x8,7);

@gin(x9);@bnd(0,x9,8);

@gin(x10);@bnd(0,x10,10);

@gin(x11);@bnd(0,x11,28);

@gin(x12);@bnd(0,x12,1);

@gin(x13);@bnd(0,x13,7);

@gin(x14);@bnd(0,x14,4);

@gin(x15);@bnd(0,x15,0);

@gin(x16);@bnd(0,x16,16);

@gin(x17);@bnd(0,x17,0);

@gin(x18);@bnd(0,x18,2);

@gin(x19);@bnd(0,x19,0);

@gin(x20);@bnd(0,x20,6);

@gin(x21);@bnd(0,x21,0);

@gin(x22);@bnd(0,x22,0);

@gin(x23);@bnd(0,x23,0);

@gin(x24);@bnd(0,x24,1);

@gin(x8);

@gin(y);

@bnd(0,y,136);

Matlab编程:

function y34

c=1;

for x1=0:4/7

    for x2=0:5/7

        for x3=0:3/7

            for x4=0:11/7

                for x5=0:1/7

                    for x6=0:0/7

                        for x7=0:3/7

                            for x8=0:7/7

                                for x9=0:8/7

                                    for x10=0:10/7

                                        for x11=0:28/7

                                            for x12=0:1/7

                                                for x13=0:7/7

                                                    for x14=0:4/7

                                                        for x15=0:0/7

                                                            for x16-0:16/7

                                                                for x17=0:0/7

                                                                    for x18=0:2/7

                                                                        for x19=0:0/7                                                                           for x20=0:6/7                                                                            for x21=0:0/7                                                                             for x22=0:0/7                                                                                    for x23=0:0/7                                                                                      for x24=0:1/7                                                                                       k1=14*x1+14.5*x2+15*x3+15.5*x4+16*x5+16.5*x6+17*x7+17.5*x8+18*x9+18.5*x10+19*x11+19.5*x12+20*x13+20.5*x14+21*x15+21.5*x16+22*x17+22.5*x18+23*x19+23.6*x20+24*x21+24.5*x22+25*x23+25.5*x24;                                                                                      k2=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15+x16+x17+x18+x19+x20+x21+x22+x23+x24;                                                                                    if(k1==89)&(k2==5)                                                                                        fprintf('%d \n %d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n',c,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21,x22,x23,x24)                                                                                           c=c+1;                                                                                      end                                                                                     end                                                                                   end

                                                                               end

                                                                            end

                                                                        end

                                                                    end

                                                                end

                                                            end

                                                        end

                                                    end

                                                end

                                            end

                                        end

                                    end

                                end

                            end

                        end

                    end

                end

            end

        end

    end

end

 

第五次搭配后各原料的剩余总根数分别为4,5,3,4,1,0,3,0,1,10,14,1,0,16,0,2,0,6,0,0,0,1,

利用lingo可求出第五次搭配成品的最大捆数为4捆(单位根),然后用Matlab编程可得出有四种不同方案,如下表所示:

原料

X23

X24

X25

X26

X27

X28

X29

X30

方案一

1

0

0

1

0

0

0

0

方案二

1

0

0

1

0

0

0

0

方案三

1

0

0

0

0

0

0

0

方案四

1

1

0

1

0

0

0

0

 

X31

X32

X33

X34

X35

X36

X37

X38

方案一

0

0

1

0

1

1

0

0

方案二

0

0

2

0

0

0

0

1

方案三

0

2

2

0

0

0

0

0

方案四

0

0

0

0

0

0

0

1

 

X39

X40

X41

X42

X43

X44

X45

X46

方案一

0

0

0

0

0

0

0

0

方案二

0

0

0

0

0

0

0

0

方案三

0

0

0

0

0

00

0

0

方案四

0

0

0

1

0

0

0

0

Lingo编程:

max=y;

14*x1+14.5*x2+15*x3+15.5*x4+16*x5+16.5*x6+17*x7+17.5*x8+18*x9+18.5*x10+19*x11+19.5*x12+20*x13+21*x15+21.5*x16+22*x17+22.5*x18+23*x19+23.5*x20+24*x21+24.5*x22+25*x23+25.5*x24=89;

x1+x2+x3+x4+x5+x6+x7+x8+x9+x11+x12+x13+x14+x15+x16+x17+x18+x19+x20+x21+x22+x23+x24=5;

y*x1<=4;

y*x2<=5;

y*x3<=3;

y*x4<=4;

y*x5<=1;

y*x6<=0;

y*x7<=3;

y*x8<=0;

y*x9<=1;

y*x10<=10;

y*x11<=14;

y*x12<=1;

y*x13<=7;

y*x14<=4;

y*x15<=0;

y*x16<=16;

y*x17<=0;

y*x18<=2;

y*x19<=0;

y*x20<=6;

y*x21<=0;

y*x22<=0;

y*x23<=0;

y*x24<=1;

@gin(x1);@bnd(0,x1,4);

@gin(x2);@bnd(0,x2,5);

@gin(x3);@bnd(0,x3,3);

@gin(x4);@bnd(0,x4,4);

@gin(x5);@bnd(0,x5,1);

@gin(x6);@bnd(0,x6,0);

@gin(x7);@bnd(0,x7,3);

@gin(x8);@bnd(0,x8,0);

@gin(x9);@bnd(0,x9,1);

@gin(x10);@bnd(0,x10,10);

@gin(x11);@bnd(0,x11,14);

@gin(x12);@bnd(0,x12,1);

@gin(x13);@bnd(0,x13,7);

@gin(x14);@bnd(0,x14,4);

@gin(x15);@bnd(0,x15,0);

@gin(x16);@bnd(0,x16,16);

@gin(x17);@bnd(0,x17,0);

@gin(x18);@bnd(0,x18,2);

@gin(x19);@bnd(0,x19,0);

@gin(x20);@bnd(0,x20,6);

@gin(x21);@bnd(0,x21,0);

@gin(x22);@bnd(0,x22,0);

@gin(x23);@bnd(0,x23,0);

@gin(x24);@bnd(0,x24,1);

@gin(x8);

@gin(y);

@bnd(0,y,136);

Matlab编程(如上搭配)

选择方案三,第六次搭配后的的剩余量为 0,5,3,4,1,0,3,0,1,2,6,1,7,4,0,16,0,2,0,6,0,0,0,1

利用lingo可求出第七次搭配成品的最大捆数为3捆(单位根),然后用Matlab编程可得出有八种不同方案,则成品一剩余的原材料的分配方案如下表所示:

原料

方案一

方案二

方案三

方案四

方案五

方案六

方案七

方案八

X23

0

0

0

0

0

0

0

0

X24

0

0

01

1

1

1

1

1

X25

1

1

0

0

1

1

1

1

X26

1

1

1

1

0

0

0

1

X27

0

0

0

0

0

0

0

0

X28

0

0

0

0

0

0

0

0

X29

0

1

0

1

0

0

1

0

X30

0

0

0

0

0

0

0

0

X31

0

0

0

0

0

0

0

0

X32

0

0

0

0

0

0

0

0

X33

2

0

1

0

1

2

1

0

X34

0

0

0

0

0

0

0

0

X35

0

1

2

0

1

0

0

0

X36

1

0

0

1

1

0

0

1

X37

0

0

0

0

0

0

0

0

X38

0

1

0

1

0

1

0

0

X39

0

0

0

0

0

0

0

0

X40

0

0

0

0

0

0

0

0

X41

0

0

0

0

0

0

0

0

X42

0

0

0

0

0

0

1

1

X43

0

0

0

0

0

0

0

0

X45

0

0

0

0

0

0

0

0

X46

0

0

0

0

0

0

0

0

Lingo编程:

max=y;

14*x1+14.5*x2+15*x3+15.5*x4+16*x5+16.5*x6+17*x7+17.5*x8+18*x9+18.5*x10+19*x11+19.5*x12+20*x13+21*x15+21.5*x16+22*x17+22.5*x18+23*x19+23.5*x20+24*x21+24.5*x22+25*x23+25.5*x24=89;

x1+x2+x3+x4+x5+x6+x7+x8+x9+x11+x12+x13+x14+x15+x16+x17+x18+x19+x20+x21+x22+x23+x24=5;

y*x1<=0;

y*x2<=5;

y*x3<=3;

y*x4<=4;

y*x5<=1;

y*x6<=0;

y*x7<=3;

y*x8<=0;

y*x9<=1;

y*x10<=2;

y*x11<=6;

y*x12<=1;

y*x13<=7;

y*x14<=4;

y*x15<=0;

y*x16<=16;

y*x17<=0;

y*x18<=2;

y*x19<=0;

y*x20<=6;

y*x21<=0;

y*x22<=0;

y*x23<=0;

y*x24<=1;

@gin(x1);@bnd(0,x1,0);

@gin(x2);@bnd(0,x2,5);

@gin(x3);@bnd(0,x3,3);

@gin(x4);@bnd(0,x4,4);

@gin(x5);@bnd(0,x5,1);

@gin(x6);@bnd(0,x6,0);

@gin(x7);@bnd(0,x7,3);

@gin(x8);@bnd(0,x8,0);

@gin(x9);@bnd(0,x9,1);

@gin(x10);@bnd(0,x10,2);

@gin(x11);@bnd(0,x11,6);

@gin(x12);@bnd(0,x12,1);

@gin(x13);@bnd(0,x13,7);

@gin(x14);@bnd(0,x14,4);

@gin(x15);@bnd(0,x15,0);

@gin(x16);@bnd(0,x16,16);

@gin(x17);@bnd(0,x17,0);

@gin(x18);@bnd(0,x18,2);

@gin(x19);@bnd(0,x19,0);

@gin(x20);@bnd(0,x20,6);

@gin(x21);@bnd(0,x21,0);

@gin(x22);@bnd(0,x22,0);

@gin(x23);@bnd(0,x23,0);

@gin(x24);@bnd(0,x24,1);

@gin(x8);

@gin(y);

@bnd(0,y,136);

Matlab编程(如上搭配)

选择方案二,第七次搭配后的的剩余量为  0,2,3,1,1,0,3,0,1,10,3,1,1,4,0,16,0,2,0,6,0,0,0,1

利用lingo可求出第七次搭配成品的最大捆数为2捆(单位根),然后用Matlab编程可得出有种不同方案,则成品一剩余的原材料的分配方案如下表所示:

原料

X23

X24

X25

X26

X27

X28

X29

X30

方案一

0

1

1

0

0

0

0

0

方案二

0

1

1

0

0

0

1

0

 

X31

X32

X33

X34

X35

X36

X37

X38

方案一

0

0

1

0

0

0

2

0

方案二

0

0

1

0

0

0

0

0

 

X39

X40

X41

X42

X43

X44

X45

X46

方案一

0

0

0

0

0

0

0

0

方案二

0

0

0

1

0

0

0

0

Lingo编程:

max=y;

14*x1+14.5*x2+15*x3+15.5*x4+16*x5+16.5*x6+17*x7+17.5*x8+18*x9+18.5*x10+19*x11+19.5*x12+20*x13+21*x15+21.5*x16+22*x17+22.5*x18+23*x19+23.5*x20+24*x21+24.5*x22+25*x23+25.5*x24=89;

x1+x2+x3+x4+x5+x6+x7+x8+x9+x11+x12+x13+x14+x15+x16+x17+x18+x19+x20+x21+x22+x23+x24=5;

y*x1<=0;

y*x2<=2;

y*x3<=3;

y*x4<=1;

y*x5<=1;

y*x6<=0;

y*x7<=3;

y*x8<=0;

y*x9<=1;

y*x10<=10;

y*x11<=3;

y*x12<=1;

y*x13<=1;

y*x14<=4;

y*x15<=0;

y*x16<=16;

y*x17<=0;

y*x18<=2;

y*x19<=0;

y*x20<=6;

y*x21<=0;

y*x22<=0;

y*x23<=0;

y*x24<=1;

@gin(x1);@bnd(0,x1,0);

@gin(x2);@bnd(0,x2,2);

@gin(x3);@bnd(0,x3,3);

@gin(x4);@bnd(0,x4,1);

@gin(x5);@bnd(0,x5,1);

@gin(x6);@bnd(0,x6,0);

@gin(x7);@bnd(0,x7,3);

@gin(x8);@bnd(0,x8,0);

@gin(x9);@bnd(0,x9,1);

@gin(x10);@bnd(0,x10,10);

@gin(x11);@bnd(0,x11,3);

@gin(x12);@bnd(0,x12,1);

@gin(x13);@bnd(0,x13,1);

@gin(x14);@bnd(0,x14,4);

@gin(x15);@bnd(0,x15,0);

@gin(x16);@bnd(0,x16,16);

@gin(x17);@bnd(0,x17,0);

@gin(x18);@bnd(0,x18,2);

@gin(x19);@bnd(0,x19,0);

@gin(x20);@bnd(0,x20,6);

@gin(x21);@bnd(0,x21,0);

@gin(x22);@bnd(0,x22,0);

@gin(x23);@bnd(0,x23,0);

@gin(x24);@bnd(0,x24,1);

@gin(x8);

@gin(y);

@bnd(0,y,136);

Matlab编程(如上搭配)

选择方案一 第八次搭配后剩余量为0,0,1,1,1,0,3,0,1,0,3,1,1,0,0,16,0,2,0,6 0,0,0,1

利用lingo可求出第九次搭配成品的最大捆数为1捆(单位根),然后用Matlab编程可得出有种25不同方案,经选择其最优方案为如下:

原料

X23

X24

X25

X26

X27

X28

X29

X30

根数

0

0

1

1

1

0

0

0

剩余总根数

0

0

0

0

0

0

3

0

 

X31

X32

X33

X34

X35

X36

X37

X38

根数

0

0

1

0

0

0

0

0

剩余总根数

1

0

2

1

1

0

0

16

 

X39

X40

X41

X42

X43

X44

X45

X46

根数

0

0

0

1

0

0

0

0

剩余总根数

0

2

0

5

0

0

0

1

Lingo编程(如上搭配)

Matlab编程(如上搭配)

利用lingo可求出第十次搭配成品的最大捆数为1捆(单位根),经选择其最优方案为如下:

原料

X23

X24

X25

X26

X27

X28

X29

X30

根数

0

0

0

0

0

0

3

0

剩余总根数

0

0

0

0

0

0

0

0

 

X31

X32

X33

X34

X35

X36

X37

X38

根数

1

0

0

0

1

0

0

0

剩余总根数

0

0

2

1

0

0

0

16

 

X39

X40

X41

X42

X43

X44

X45

X46

根数

0

0

0

0

0

0

0

0

剩余总根数

0

2

0

5

0

0

0

1

Lingo编程(如上搭配)

Matlab编程(如上搭配)

 

你可能感兴趣的:(数学建模)