使用栈实现队列的下列操作:
push(x) -- 将一个元素放入队列的尾部。
pop() -- 从队列首部移除元素。
peek() -- 返回队列首部的元素。
empty() -- 返回队列是否为空。
示例:
MyQueue queue = new MyQueue();
queue.push(1);
queue.push(2);
queue.peek(); // 返回 1
queue.pop(); // 返回 1
queue.empty(); // 返回 false
说明:
你只能使用标准的栈操作 -- 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)。
class MyQueue {
/** Initialize your data structure here. */
public MyQueue() {
}
private Deque<Integer> in = new LinkedList<>();
private Deque<Integer> out = new LinkedList<>();
/** Push element x to the back of queue. */
public void push(int x) {
in.addFirst(x);
}
/** Removes the element from in front of queue and returns that element. */
public int pop() {
in2out();
return out.removeFirst();
}
/** Get the front element. */
public int peek() {
in2out();
return out.peekFirst();
}
/** Returns whether the queue is empty. */
public boolean empty() {
return out.isEmpty() && in.isEmpty();
}
private void in2out() {
if (out.isEmpty()) {
while(!in.isEmpty()) {
out.addFirst(in.removeFirst());
}
}
}
}
/**
* Your MyQueue object will be instantiated and called as such:
* MyQueue obj = new MyQueue();
* obj.push(x);
* int param_2 = obj.pop();
* int param_3 = obj.peek();
* boolean param_4 = obj.empty();
*/
使用队列实现栈的下列操作:
push(x) -- 元素 x 入栈
pop() -- 移除栈顶元素
top() -- 获取栈顶元素
empty() -- 返回栈是否为空
注意:
你只能使用队列的基本操作-- 也就是 push to back, peek/pop from front, size, 和 is empty 这些操作是合法的。
你所使用的语言也许不支持队列。 你可以使用 list 或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
你可以假设所有操作都是有效的(例如, 对一个空的栈不会调用 pop 或者 top 操作)。
class MyStack {
Deque<Integer> queue;
/** Initialize your data structure here. */
public MyStack() {
queue = new LinkedList<>();
}
/** Push element x onto stack. */
public void push(int x) {
queue.offer(x);
int size = queue.size();
while (size-- > 1) {
queue.offer(queue.poll());
}
}
/** Removes the element on top of the stack and returns that element. */
public int pop() {
return queue.poll();
}
/** Get the top element. */
public int top() {
return queue.peek();
}
/** Returns whether the stack is empty. */
public boolean empty() {
return queue.isEmpty();
}
}
/**
* Your MyStack object will be instantiated and called as such:
* MyStack obj = new MyStack();
* obj.push(x);
* int param_2 = obj.pop();
* int param_3 = obj.top();
* boolean param_4 = obj.empty();
*/
设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。
push(x) —— 将元素 x 推入栈中。
pop() —— 删除栈顶的元素。
top() —— 获取栈顶元素。
getMin() —— 检索栈中的最小元素。
示例:
输入:
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]
输出:
[null,null,null,null,-3,null,0,-2]
解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.
提示:
pop、top 和 getMin 操作总是在 非空栈 上调用。
class MinStack {
private Deque<Integer> stack;
private Deque<Integer> minStack;
private int min;
/** initialize your data structure here. */
public MinStack() {
stack = new LinkedList<>();
minStack = new LinkedList<>();
min = Integer.MAX_VALUE;
}
public void push(int x) {
stack.offerFirst(x);
min = Math.min(min, x);
minStack.offerFirst(min);
}
public void pop() {
stack.pollFirst();
minStack.pollFirst();
min = minStack.isEmpty() ? Integer.MAX_VALUE : minStack.peekFirst();
}
public int top() {
return stack.peekFirst();
}
public int getMin() {
return minStack.peekFirst();
}
}
/**
* Your MinStack object will be instantiated and called as such:
* MinStack obj = new MinStack();
* obj.push(x);
* obj.pop();
* int param_3 = obj.top();
* int param_4 = obj.getMin();
*/
给定一个只包括 ‘(’,’)’,’{’,’}’,’[’,’]’ 的字符串,判断字符串是否有效。
有效字符串需满足:
左括号必须用相同类型的右括号闭合。
左括号必须以正确的顺序闭合。
注意空字符串可被认为是有效字符串。
示例 1:
输入: "()"
输出: true
示例 2:
输入: "()[]{}"
输出: true
示例 3:
输入: "(]"
输出: false
示例 4:
输入: "([)]"
输出: false
示例 5:
输入: "{[]}"
输出: true
class Solution {
public boolean isValid(String s) {
Deque<Character> stack = new LinkedList<>();
for (char c : s.toCharArray()) {
if (c == '(' || c == '[' || c == '{') {
stack.addFirst(c);
} else {
if (stack.isEmpty()) {
return false;
}
char tmp = stack.removeFirst();
boolean flag1 = c == ')' && tmp != '(';
boolean flag2 = c == ']' && tmp != '[';
boolean flag3 = c == '}' && tmp != '{';
if (flag1 || flag2 || flag3) {
return false;
}
}
}
return stack.isEmpty();
}
}
请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需要等待的天数。如果气温在这之后都不会升高,请在该位置用 0 来代替。
例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。
提示:气温 列表长度的范围是 [1, 30000]。每个气温的值的均为华氏度,都是在 [30, 100] 范围内的整数。
class Solution {
public int[] dailyTemperatures(int[] T) {
int n = T.length;
int[] dist = new int[n];
Deque<Integer> stack = new LinkedList<>();
for (int curIndex = 0; curIndex < n; curIndex++) {
while (!stack.isEmpty() && T[curIndex] > T[stack.peekFirst()]) {
int preIndex = stack.pollFirst();
dist[preIndex] = curIndex - preIndex;
}
stack.addFirst(curIndex);
}
return dist;
}
}
给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素。数字 x 的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1。
示例 1:
输入: [1,2,1]
输出: [2,-1,2]
解释: 第一个 1 的下一个更大的数是 2;
数字 2 找不到下一个更大的数;
第二个 1 的下一个最大的数需要循环搜索,结果也是 2。
注意: 输入数组的长度不会超过 10000。
class Solution {
public int[] nextGreaterElements(int[] nums) {
int n = nums.length;
int[] next = new int[n];
Arrays.fill(next, -1);
Deque<Integer> stack = new LinkedList<>();
for (int i = 0; i < n * 2; i++) {
int num = nums[i % n];
while (!stack.isEmpty() && nums[stack.peekFirst()] < num) {
next[stack.pollFirst()] = num;
}
if (i < n) {
stack.addFirst(i);
}
}
return next;
}
}