常用组合数计算公式

  • C n 2 = n ∗ ( n − 1 ) 2 C_n^2=\frac{n*(n-1)}{2} Cn2=2n(n1)

  • C n 3 = n ∗ ( n − 1 ) ∗ ( n − 2 ) 6 C_n^3=\frac{n*(n-1)*(n-2)}{6} Cn3=6n(n1)(n2)

  • C n m = C n − 1 m − 1 + C n − 1 m C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m} Cnm=Cn1m1+Cn1m

  • m ∗ C n m = n ∗ C n − 1 m − 1 m*C_{n}^{m}=n*C_{n-1}^{m-1} mCnm=nCn1m1

  • C n 0 + C n 1 + C n 2 + ⋯ + C n n = 2 n C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+\dots+C_{n}^{n}=2^n Cn0+Cn1+Cn2++Cnn=2n

  • 1 C n 1 + 2 C n 2 + 3 C n 3 + ⋯ + n C n n = n 2 n − 1 1C_{n}^{1}+2C_{n}^{2}+3C_{n}^{3}+\dots+nC_{n}^{n}=n2^{n-1} 1Cn1+2Cn2+3Cn3++nCnn=n2n1

  • 1 2 C n 1 + 2 2 C n 2 + 3 2 C n 3 + ⋯ + n 2 C n n = n ( n + 1 ) 2 n − 2 1^2C_{n}^{1}+2^2C_{n}^{2}+3^2C_{n}^{3}+\dots+n^2C_{n}^{n}=n(n+1)2^{n-2} 12Cn1+22Cn2+32Cn3++n2Cnn=n(n+1)2n2

  • C n 1 1 − C n 2 2 + C n 3 3 + ⋯ + ( − 1 ) n − 1 C n n n = 1 + 1 2 + 1 3 + ⋯ + 1 n \frac{C_{n}^{1}}{1}-\frac{C_{n}^{2}}{2}+\frac{C_{n}^{3}}{3}+\dots+(-1)^{n-1}\frac{C_{n}^{n}}{n}=1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n} 1Cn12Cn2+3Cn3++(1)n1nCnn=1+21+31++n1

  • ( C n 0 ) 2 + ( C n 1 ) 2 + ( C n 2 ) 2 + ⋯ + ( C n n ) 2 = C 2 n n (C_{n}^{0})^2+(C_{n}^{1})^2+(C_{n}^{2})^2+\dots+(C_{n}^{n})^2=C_{2n}^{n} (Cn0)2+(Cn1)2+(Cn2)2++(Cnn)2=C2nn

你可能感兴趣的:(数论)