- 云原生Serverless平台:无服务器计算的架构革命
桂月二二
云原生serverless架构
引言:从虚拟机到函数即服务(FaaS)AWSLambda每天处理数十万亿次请求,阿里巴巴函数计算支撑双十一亿级事件触发。KnativeServing实现秒级自动扩缩至零,Vercel边缘函数网络响应时间跌破50ms。CNCFOpenFaaS在GitHub斩获25k星,AzureFunctions支持毫秒级计费精度,GoogleCloudRun冷启动优化至200ms内。全球500强企业70%采用Se
- AWS无服务器 应用程序开发—第十一章API Gateway
yunquantong
AWS技术awsserverlessgateway
APIGateway是AWS提供的一种托管服务,用于创建、发布、维护、保护和监控RESTful和WebSocketAPI。它可以帮助开发者构建可扩展的微服务架构,并提供了丰富的功能来管理API的生命周期和流量。主要功能和特点:API创建和管理:可以使用APIGateway快速创建和定义API,包括定义资源、方法和参数。支持多种集成方式,如AWSLambda、AWSEC2、AWSS3等,还可以自定义
- 从零开始学Java Lambda表达式:一篇让你彻底理解的通俗指南
z2637305611
学习java开发语言
引言想象你每天点外卖要写500字的订单备注,结果有一天发现点“快速套餐”按钮就能搞定——这就是Lambda表达式的魅力!它能让你用“快餐式”代码代替冗长的写法。本文会用大白话、生活案例和代码对比,帮你彻底搞懂JavaLambda的用法!一、Lambda是什么?一句话概括:“用更短的代码,实现一个方法”——专门用来简化匿名内部类的写法!场景对比:传统写法vsLambda写法假设你有一个“点击按钮触发
- Ubuntu20.04安装LOCUS遇到的编译错误
谁许谁地老天荒
SLAM-ROSubuntuc++
1、编译错误:core_msgs/MapInfo.h:没有那个文件或目录具体报错如下/home/zys/catkin_ws/test/src/common_nebula_slam/point_cloud_mapper/include/point_cloud_mapper/PointCloudMapper.h:48:10:fatalerror:core_msgs/MapInfo.h:没有那个文件或目
- Ubuntu20.04 ros-noetic下opencv多版本问题may conflict with libopencv_highgui.so.4.2
JANGHIGH
小技巧OpenCVopencv人工智能计算机视觉
Ubuntu20.04ros-noetic下opencv多版本问题问题解决情况1情况2方法当前终端生效将上述命令添加到~/.bashrc中,使其永久生效问题当编译某程序包时,出现如下警告,但是编译通过。/usr/bin/ld:warning:libopencv_highgui.so.406,neededby/lidar_slam_ws/devel/lib/libvikit_common.so,ma
- VSLAM新方案之《在复杂环境中实现高精度与超强鲁棒性》
OAK中国_官方
SLAM人工智能rpab-map
OAKChina&苏州泛科特机器人联合推出OAK-DSeries&因子空间感知(FactorPerceptionKit)VSLAM解决方案01FactorPerceptionKit简介FactorPerceptionKit是一种真正基于深度学习技术的VSLAM方案,不同于许多厂商仅通过添加目标检测或语义分割模型来实现额外功能,我们直接在SLAM底层使用HF-Net模型,该模型同时进行局部特征点检测
- 案例分享:D2 Slam @xuhao3e8
OAK中国_官方
无人机
视频来源:$D^2$SLAM:DecentralizedandDistributedCollaborativeVisual-inertialSLAM硬件新4P的介绍https://www.oakchina.cn/product/oak-ffc-4p-new/软件介绍:https://github.com/HKUST-Aerial-Robotics/D2SLAM~~~~~~~(分界线)~~~~~~~
- OAK相机:纯视觉SLAM在夜晚的应用
OAK中国_官方
人工智能机器学习SLAM
哈喽,OAK的朋友们,大家好啊,今天这个视频主要想分享一下袁博士团队用我们的OAK相机产出的新成果在去年过山车SLAM的演示中,袁博士团队就展示了纯视觉SLAM在完全黑暗的环境中的极高鲁棒性。现在袁博士团队进一步挖掘了纯视觉的潜力,于是又专门录了一段夜间的演示给我们展示了在完全黑暗及光线变化的环境中可靠工作的VIO、回环检测及适用于大场景的内存管理技术。他们现在已将整套VSLAM方案包含在Fact
- 利用 AWS API Gateway 和 Lambda 节省成本的指南
fxrz12
awsgateway云计算无服务器架构低代码
在现代云计算环境中,企业和开发人员不断寻求方法来优化成本,同时保持高性能和灵活性。AWSAPIGateway和Lambda组合提供了一种无服务器(Serverless)的解决方案,能够显著降低基础设施成本,简化管理,并提升应用的可扩展性。APIGateway和Lambda的成本效益1.无需服务器管理使用AWSLambda,您无需预置或管理服务器。这意味着不再需要为闲置的资源付费。Lambda采用按
- 视觉SLAM十四讲 第7讲 (3) 相机运动估计 2D-2D/3D-2D/3D-3D
LYF0816LYF
slamlearning3d计算机视觉算法slam
相机运动估计2D-2D/3D-2D/3D-3D1.2D-2D:对极约束2.三角测量3.3D-2D:PnP3.1直接线性变换DLT3.2P3P3.3最小化投影误差求解PnP4.3D-3D:ICP4.1SVD方法4.2非线性优化方法5.总结若已经有匹配好的点对,要根据点对估计相机的运动,可以分为以下三种情况:2D-2D:即点对都是2D点,比如单目相机匹配到的点对。我们可以用对极几何来估计相机的运动。在
- unable to launch什么意思_激光SLAM | IMLS-SLAM:基于scan-to-model方法的大场景3D激光SLAM...
weixin_39559097
unabletolaunch什么意思
论文题目:IMLS-SLAM:scan-to-modelmatchingbasedon3DdataIMSL-SLAM和IMSL-SLAM++是kitti数据集上仅次于LOAM的激光SLAM系统,虽然它有一个最大的缺点,就是不实时,而且时间确实非常慢(1.3s),但是作者也给出了这种不实时的原因,是可以改进的。更重要的是,论文里以IMLS曲面为基础进行的scan-to-model匹配方法是值得借鉴的
- SLAM文献之-IMLS-SLAM: scan-to-model matching based on 3D data
点云SLAM
SLAM3d机器学习SLAMIMLSICP
IMLS-SLAM算法原理详解一、算法概述IMLS-SLAM(ImplicitMovingLeastSquaresSLAM)是一种基于3D激光雷达数据的低漂移SLAM算法,由Jean-EmmanuelDeschaud等人在2018年提出。其核心思想是通过隐式移动最小二乘(IMLS)曲面建模实现scan-to-model的匹配框架,显著提升了定位与建图的精度和鲁棒性。该算法在无闭环检测的情况下,4公
- ORB_SLAM2编译build_ros.sh时报错([rosbuild] Error from directory check: /opt/ros/kinetic/share)
Spider_man_
linux
参考:https://www.pianshen.com/article/8679352229/编译build_ros.sh时报错在ros上编译build_ros.sh时报错,出现如下信息:BuildingROSnodesmkdir:cannotcreatedirectory‘build’:Fileexists[rosbuild]BuildingpackageORB_SLAM2[rosbuild]E
- 3DGS(三维高斯散射)与SLAM技术结合的应用
点云SLAM
SLAM3d3DGSSLAM技术深度学习计算机视觉定位和建图渲染
3DGS(三维高斯散射)与SLAM(即时定位与地图构建)技术的结合,为动态环境感知、高效场景建模与实时渲染提供了新的可能性。以下从技术融合原理、应用场景、优势挑战及典型案例展开分析:一、核心融合原理1.3DGS在SLAM中的角色场景表示:替代传统点云或体素地图,通过高斯函数集合显式建模场景几何与外观。动态建模:通过时间参数化高斯(如位置、协方差随时间变化),实时跟踪运动物体。可微渲染:支持端到端优
- Serverless Framework 使用教程
裘羿洲
ServerlessFramework使用教程serverless无服务器框架——使用AWSLambda、AzureFunctions、GoogleCloudFunctions等构建无服务器架构的Web、移动和物联网应用程序!项目地址:https://gitcode.com/gh_mirrors/se/serverless项目介绍ServerlessFramework是一个开源项目,旨在帮助开发者
- 用云平台资源每月免费额度搭建博客,一年账单竟是 $0!
fxrz12
云计算无服务个人博客serverless架构云原生程序开发云计算
一年前,我在寻找一个低成本的方式来托管我的个人博客。当时,我的需求很简单:尽量降低成本——毕竟只是一个个人博客,没有盈利,也不想每个月为服务器付费。尽可能少的运维——不想每天盯着服务器是否宕机,能无忧无虑地运行就好。快速响应——不希望读者打开网页时,等上好几秒。就在这个时候,我无意间发现了AWSLambda的每月免费额度。AWS为Lambda提供每月100万次请求和40万GB-秒的计算时间,而对于
- 动态视觉SLAM的亿点点思考(含20项最新开源代码链接)[上篇]
3D视觉工坊
3D视觉从入门到精通人工智能
作者:泡椒味的口香糖|来源:3D视觉工坊添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。0.笔者个人体会动态环境下的视觉SLAM一直都是研究的重点和难点,但最近动态SLAM的paper越来越少,感觉主要原因是动态SLAM的框架已经固化,很难做出大的创新。现有的模板基本就是使用目标检测或者语义分割网络剔除动态特征点,然后用几何一致性做进一步的验证。笔者最近也在思考突破口,
- 无人机实战系列(二)本地摄像头 + Depth-Anything V2
nenchoumi3119
无人机实战无人机
这篇文章介绍了如何在本地运行Depth-AnythingV2,因为我使用的无人机是Tello,其本身仅提供了一个单目视觉相机,在众多单目视觉转Depth的方案中我选择了Depth-AnythingV2,这个库的强大在于其基于深度学习模型将单目视觉以较低的代价转换成RGBD图像,可以用来无人机避障与SLAM。Step1.拉取Depth-AnythingV2源码与模型下载官方仓库提供了两种方式调用De
- JavaAPI(lambda表达式、流式编程)
NGC2237999
java算法开发语言
Lambda表达式本质上就是匿名内部类的简写方式(匿名内部类见:JAVA面向对象3(抽象类、接口、内部类、枚举)-CSDN博客)该表达式只能作用于函数式接口,函数式接口就是只有一个抽象方法的接口。可以使用注解@FunctionalInterface来验证publicclassLambdaDemo01{publicstaticvoidmain(String[]args){//InterAx=(int
- 点云从入门到精通技术详解100篇-基于多线激光雷达的点云数据处理与导航(续)
格图素书
人工智能算法
目录三维点云建图与定位算法研究§3.1激光SLAM技术§3.2基于特征的建图算法§3.2.1三维点云建图算法简述§3.2.3LeGO-LOAM建图算法§3.3基于点云配准的定位算法§3.3.1点云配准§3.3.2基于ICP的配准定位算法§3.3.3基于NDT的配准定位算法§3.4基于LM法优化的NDT配准定位算法§3.4.1列文伯格-马夸尔特法原理§3.4.2LM-NDT算法配准原理及流程§3.5
- GTSAM 库详细介绍与使用指南
点云SLAM
点云数据优化工具GTSAMSLAM后端优化最小二乘法计算机视觉贝叶斯
GTSAM库详细介绍与使用指南一、GTSAM概述GTSAM(GeorgiaTechSmoothingandMapping)是由佐治亚理工学院开发的C++开源库,专注于概率图模型(尤其是因子图)的构建与优化,广泛应用于机器人定位与建图(SLAM)、传感器融合、运动规划等领域。其核心优势在于:高效的因子图优化:支持贝叶斯网络建模与非线性优化。增量式求解器(iSAM/iSAM2):适用于实时SLAM问题
- 【CCM-SLAM论文阅读笔记】
随机取名字
协同SLAM论文阅读slam
CCM-SLAM论文阅读笔记整体框架结构如图所示:单智能体只负责采集图像数据,运行实时视觉里程计VO以估计当前位姿和环境地图,由于单智能体计算资源有限,负责生成的局部地图只包含当前N个最近的关键帧。服务器负责地图管理、地点识别、地图融合和全局BA优化。所有局部地图使用本地里程计框架,地图信息在从一个本地里程计到另一个本地里程计框架的相对坐标中进行交换。CCM-SLAM不假设任何关于智能体初始位置的
- 聊聊这两年学习slam啃过的书!
3D视觉工坊
3D视觉从入门到精通定位编程语言人工智能机器学习slam
入坑2年多,零七零八买了7、8本书,正好最近研一的新师弟让我来推荐几本,那么,独乐乐不如众乐乐,我就来巴拉巴拉一下我买的这些书吧。以下测评,仅代表个人观点,与书的作者无关(狗头保命)1、【C++PrimerPlus】嗯~这个灰常灰常厚的c++书是我买的第一本书,也是我所有书里除了java最厚的一本(java买了就没看),But,这本巨厚的c++我竟然翻完了!!!当年,年轻的我以为,看完这本书,我就
- 腿足机器人之十- SLAM地图如何用于运动控制
shichaog
腿足机器人机器人
腿足机器人之十-SLAM地图如何用于运动控制腿足机器人SLAM地图的表示与处理全局路径规划:地形感知的路径搜索基于A*的三维路径规划基于RRT*的可行步态序列生成局部运动规划:实时步态调整与避障动态窗口法的腿足适配模型预测控制(MPC)与步态优化稳定性控制与SLAM定位的协同BostonDynamicsAtlas机器人的SLAM导航相比于轮式机器人(如人形轮式机器,可以看成是扫地机器人之上加了一个
- AWS Lambda参考架构:MapReduce实现指南
郜逊炳
AWSLambda参考架构:MapReduce实现指南lambda-refarch-mapreduceThisrepopresentsareferencearchitectureforrunningserverlessMapReducejobs.ThishasbeenimplementedusingAWSLambdaandAmazonS3.项目地址:https://gitcode.com/gh_m
- [学习笔记-SLAM篇]Ubuntu16.04+ROS下配置ORB-SLAM3——后续
warningm_dm
SLAM篇
作为一篇后记,就主要做补充之用。索引1.编译不显示warning2.LocalMapping报错3.KannalaBrandt8报错4.RGB-D设置文件1.编译不显示warning编译的过程中有报错,但是一贯的,warning太多了,所以修改一下,便于找错。参考ubuntu18.04配置ORB-SLAM3。将ORB-SLAM3的CMakeLists.txt中的-Wall后面加上-w,可屏蔽编译的
- 用realsense d435i传感器在实际环境中跑ORB_SLAM3,顺带解决一部分编译问题
睫力上爬
SLAM日常折腾传感器ORB_SLAM3
是的ORB_SLAM3来了,时隔五年,它来带的惊喜到底是啥呢?一个完全依赖于最大后验估计(MAP)的单/双目惯导融合系统高回召的地点识别功能(High-recallplacerecognition)第一个完整的多地图系统(multi-map)一个抽象的相机模型表示论文地址论文细节今天不说,今天主要先拿到代码,并且用自己的传感器试试实际效果编译终端拉代码记得提前安装好OpenCV,Eigen,和Pa
- 【ORB_SLAM系列3】—— 如何在Ubuntu18.04中使用自己的单目摄像头运行ORB_SLAM3(亲测有效,踩坑记录)
啥也不会的研究僧
SLAM算法安装与实践记录ubuntu计算机视觉人工智能自动驾驶
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、ORB_SLAM3源码编译二、ORB_SLAM3实时单目相机测试1.查看摄像头的话题2.运行测试三.运行测试可能的报错1.报错一(1)问题描述(2)原因分析(3)解决2.报错二(1)问题描述(2)解决前言本次教程运行ORB_SLAM3,所需的环境如下:Ubuntu18.04、ros版本:melodicOpencv4.5
- ORB-SLAM3源码的学习:GeometricTools文件
PaLu-LvL
计算机视觉#ORB-SLAM3c++计算机视觉ubuntu人工智能学习
前言GeometricTools提供了两种几何计算功能:1.计算两个关键帧之间的基础矩阵、2.通过三角化算法从两个视角恢复三维点。这部分功能在ORB-SLAM2中就已经介绍过了,这里不过多赘述。1.头文件GeometricTools.h除了计算基础矩阵和三角化恢复三维点外,头文件中还提供了两种用于比较矩阵的模板函数。第一个函数用于比较一个OpenCV矩阵和一个Eigen矩阵,第二个函数用于比较两个
- ORB-SLAM3的源码学习: Settings.cc:Settings::readImageInfo读取图像信息
PaLu-LvL
计算机视觉#ORB-SLAM3计算机视觉opencvubuntuc++人工智能学习
前言简单总结一下:这个函数的主要目的是从配置文件中读取和设置与相机图像尺寸相关的各种参数。它会根据需要调整图像的宽度和高度,并根据这些调整更新相机的校准参数。如果是立体相机或带IMU的相机,还会同时更新第二个相机的校准参数。最终,这些调整确保图像和相机校准信息的一致性。1.函数声明voidSettings::readImageInfo(cv::FileStorage&fSettings)2.函数定
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =