LightOJ - 1058 Parallelogram Counting(平行四边形个数)


Parallelogram Counting
Time Limit: 2000MS Memory Limit: 32768KB 64bit IO Format: %lld & %llu

Submit Status

Description

There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as{A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.

Input

Input starts with an integer T (≤ 15), denoting the number of test cases.

The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.

Output

For each case, print the case number and the number of parallelograms that can be formed.

Sample Input

2

6

0 0

2 0

4 0

1 1

3 1

5 1

7

-2 -1

8 9

5 7

1 1

4 8

2 0

9 8

Sample Output

Case 1: 5

Case 2: 6

//题意:输入一个n,再输入n个点的坐标。

给你n个点的坐标让你求出这n个点可以组成几个平行四边形。

//思路:

因为平行四边形的两条对角线的交点是唯一的,所以先求出这n个点所能组成的所有线段的中点(n*(n-1)/2个中点),对其进行排序后,对这些中点进行计算,如果在一个中点处有num条线段相交,那么在这个中点处可以组成num*(num-1)/2个平行四边形。最所有中点模拟一遍对其求和即为所得。

AC代码:

#include
#include
#include
using namespace std;
struct node
{
    int x,y;
};
node point[1010];
node mid[1010*1010];

int cmp(node A,node B)
{
    if(A.x==B.x)
        return A.y


你可能感兴趣的:(OJ练习)