逆元 hdu1576

hdu 1576
**(a + b) % p = (a%p + b%p) %p (对)

(a - b) % p = (a%p - b%p) %p (对)

(a * b) % p = (a%p * b%p) %p (对)

(a / b) % p = (a%p / b%p) %p (错)
a和p互质,a才有关于p的逆元
费马小定理
a^(p-1) ≡1 (mod p)
两边同除以a
应该写a^(p-2) ≡ inv(a) (mod p)
所以inv(a) = a^(p-2) (mod p)
这个用快速幂求一下,复杂度O(logn)
**

方法一

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include 
#define lowbit(x) (x&(-x))
#define inf  0x7fffffff
#define linf 0x7fffffffffffffff
#define fill(x,y) memset(x,y,sizeof(x))
#define fup(i,x,y) for(int i=(x);i<=(y);i++)
#define fdn(i,x,y) for(int i=(x);i>=(y);i--)
#define sp(x) setprecision(x)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define sc(n) scanf("%s",&n)
#define pf(x) printf("%d\n",x)
#define pfl(x) printf("%lld\n",x)
#define pff(x) printf("%lf\n",x)
//#define N 200005
#define M 4000009
#define mod 9973
#define pi acos(-1)
#define eps 1e-2
//cout.setf(ios::fixed);
//freopen("out.txt","w",stdout);
using namespace std;
typedef long long ll;
typedef double db;
ll quick(ll a,ll b)
{
    ll ans=1;
    while(b)
    {
        if(b&1)ans*=a,ans%=9973;
        a*=a;
        a%=9973;
        b>>=1;
    }
    return ans;
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        long long a,b,k;

        cin>>a>>b;
        b=quick(b,9971);
        cout<9973<

方法二

要用扩展欧几里德算法
a*x + b*y = 1
如果ab互质,有解
这个解的x就是a关于b的逆元
y就是b关于a的逆元
为什么呢?

你看,两边同时求余b

a*x % b + b*y % b = 1 % b

a*x % b = 1 % b

a*x = 1 (mod b)
所以x是a关于b的逆元

反之可证明y

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include 
#define lowbit(x) (x&(-x))
#define inf  0x7fffffff
#define linf 0x7fffffffffffffff
#define fill(x,y) memset(x,y,sizeof(x))
#define fup(i,x,y) for(int i=(x);i<=(y);i++)
#define fdn(i,x,y) for(int i=(x);i>=(y);i--)
#define sp(x) setprecision(x)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define sc(n) scanf("%s",&n)
#define pf(x) printf("%d\n",x)
#define pfl(x) printf("%lld\n",x)
#define pff(x) printf("%lf\n",x)
//#define N 200005
#define M 4000009
#define mod 9973
#define pi acos(-1)
#define eps 1e-2
//cout.setf(ios::fixed);
//freopen("out.txt","w",stdout);
using namespace std;
typedef long long ll;
typedef double db;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
    ll d;
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    d=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}
int main()
{
    int t ;
    sd(t);
    while(t--)
    {
        ll a,b,x,y,d;
        sldd(a,b);
        d=exgcd(b,9973,x,y);
        ll k=9973/d;
        x=(x%k+k)%k;
        pfl(x/d*a%9973);
    }
    return 0;
}

方法三

当p是个质数的时候有
inv(a) = (p - p / a) * inv(p % a) % p
我就不证明了哈
inv(a)=inv(a%mod)

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include 
#define lowbit(x) (x&(-x))
#define inf  0x7fffffff
#define linf 0x7fffffffffffffff
#define fill(x,y) memset(x,y,sizeof(x))
#define fup(i,x,y) for(int i=(x);i<=(y);i++)
#define fdn(i,x,y) for(int i=(x);i>=(y);i--)
#define sp(x) setprecision(x)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define sc(n) scanf("%s",&n)
#define pf(x) printf("%d\n",x)
#define pfl(x) printf("%lld\n",x)
#define pff(x) printf("%lf\n",x)
#define N 10000
#define M 4000009
#define mod 9973
#define pi acos(-1)
#define eps 1e-2
//cout.setf(ios::fixed);
//freopen("out.txt","w",stdout);
using namespace std;
typedef long long ll;
typedef double db;
int inv[N];
int init(){
    inv[1] = 1;
    for(int i = 2; i < N; i ++){
        inv[i] = (mod - mod / i) * 1ll * inv[mod % i] % mod;
    }
}
int main()
{
    int t ;
    init();
    sd(t);
    while(t--)
    {
        ll a,b,x,y,d;
        sldd(a,b);
        pfl(inv[b%mod]*a%9973);
    }
    return 0;
}

方法四

将a还原回初始状态再计算

#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define INF 0x3f3f3f3f
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        long long a,b;

        cin>>a>>b;
        b%=9973;
        while(a%b!=0)
        a+=9973;
        cout<9973<

你可能感兴趣的:(数论)