poj3070
快速幂模板:
while(b){
if(b&1){
ans=ans*a%p;
}
a=a*a%p;
b>>=1;
}
Fibonacci
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 25547 Accepted: 17065
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int mod=10000;
const int N=2;
ll tmp[N][N],res[N][N];
void multi(ll a[][N],ll b[][N],int n)
{
memset(tmp,0,sizeof(tmp));
for(ll i=0;i<n;i++)
{
for(ll j=0;j<n;j++)
{
for(ll k=0;k<n;k++)
{
tmp[i][j]+=(a[i][k]*b[k][j])%mod;
}
tmp[i][j]=tmp[i][j]%mod;
}
}
for(ll i=0;i<n;i++)
for(ll j=0;j<n;j++)
a[i][j]=tmp[i][j];
}
void Pow(ll a[][N],ll m,int n)
{
memset(res,0,sizeof(res));//m是幂,n是矩阵大小
for(ll i=0;i<n;i++) res[i][i]=1;
while(m)
{
if(m&1)
multi(res,a,n);//res=res*a;复制直接在multi里面实现了;
multi(a,a,n);//a=a*a
m>>=1;
}
}
int main()
{
ll m;
int n;
ll a[N][N];
while(cin>>m&&m!=-1)
{
n=2;
a[0][0]=1,a[0][1]=1,a[1][0]=1,a[1][1]=0;
Pow(a,m,n);
printf("%lld\n",res[1][0]);
}
return 0;
}
.