- 数据结构 第6章 图(一轮习题总结)
ITS_Oaij
408:数据机构(习题知识点)数据结构算法c语言
数据结构第6章图6.1图的基本概念6.2图的存储及基本操作6.3图的遍历6.4图的应用6.1图的基本概念(2411)6.2图的存储及基本操作(112131516)6.3图的遍历(23516)6.4图的应用(14568910111314192425283334)6.1图的基本概念T2一个有个顶点和n条边的图,一定是有环的。T4无向图的连通分量=极大连通子图图的遍历:每个结点只访问一次;若为非连通图,
- 邓俊辉数据结构与算法学习笔记-第五章
xiaodidadada
数据结构与算法
文章目录树aa1树a2应用a3有根树a4有序树a5路径a6连通图无环图a7深度层次b在计算机中表示b1树的表示b2父节点b3孩子节点b4父亲孩子表示法b5长子兄弟表示法c二叉树c1二叉树概述c2真二叉树c3描述多叉树d二叉树d1BinNode类d2BinNode接口d3BinTree类d4高度更新d5节点插入e相关算法e1-1先序遍历转化策略e1-2遍历规则e1-3递归实现e1-4迭代实现e1-5
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- 代码随想录算法训练营day64 | 98. 所有可达路径
sunflowers11
代码随想录二刷算法
图论理论基础1、图的种类整体上一般分为有向图和无向图。加权有向图,就是图中边是有权值的,加权无向图也是同理。2、度无向图中有几条边连接该节点,该节点就有几度在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。3、连通性在图中表示节点的连通情况,我们称之为连通性连通图和强连通图在无向图中,任何两个节点都是可以到达的,我们称之为连通图。如果有节点不能到达其他节点,
- Day44 | 图论理论基础 98. 所有可达路径
086小包字
图论算法数据结构java
语言Java图论理论基础整体上一般分为有向图和无向图有向图就是有箭头的,无向图就是没有方向的。有几条连线就是有几个度。在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。在无向图中,任何两个节点都是可以到达的,我们称之为连通图。在有向图中,任何两个节点是可以相互到达的,我们称之为强连通图。98.所有可达路径98.所有可达路径题目给定一个有n个节点的有向无环图,
- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 【数据结构】图
rygttm
数据结构数据结构算法
文章目录图1.图的两种存储结构2.图的两种遍历方式3.最小生成树的两种算法(无向连通图一定有最小生成树)4.单源最短路径的两种算法5.多源最短路径图1.图的两种存储结构1.图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存
- 史上最系统的的竞赛图讲解:学透竞赛图看这一篇就够了!
准确、系统、简洁地讲算法
算法图论
文章目录定义性质一、兰道定理(竞赛图的判定)比分序列:将每个点的出度从小到大排序的序列。定理内容:定理证明拓展二、竞赛图缩点后拓扑序成链状,拓扑序小的点向所有拓扑序比它大的点连边。(1)与SCC,拓扑序相关推论:1.根据成链状容易发现当不存在位置i满足以下条件,图为强连通图。2.在同一个SCC中在比分序列上是一个区间,根据比分序列可以完成拓扑排序。(无需建图)(2)与三元环和n>=3元环相关a.竞
- 图论
whynotybb
基于DFS求无向连通图的环对于每一个连通分量,如果无环则只能是树,即:边数=结点数-1只要有一个满足边数>结点数-1原图就有环,环的个数为:边的个数-顶点个数+1;publicMap>getRings(){//用来记录结点访问状态的数组,0----还未访问;1-----正在进行访问2------------已访问完visit=newint[nVerts];//记录当前结点已经访问过的结点,并记录了
- 最小生成树 —— Prim 和 Kruskal 算法
CharlesWu123
数据结构与算法数据结构与算法最小生成树PrimKruskal
最小生成树定义生成树:连通图包含全部顶点的一个极小连通子图最小生成树:对于带权无向连通图G=(V,E),G的所有生成树当中边的权值之和最小的生成树为G的最小生成树(MST)性质最小生成树不一定唯一,即最小生成树的树形不一定唯一。当带权无向连通图G的各边权值不等时或G只有节点数减1条边时,MST唯一最小生成树的权值是唯一的,且是唯一的最小生成树的边数为顶点数减1算法Prim算法适用于稠密图,Krus
- 数据结构与算法--PTA第六章习题
Java之弟
数据结构与算法算法
数据结构与算法--PTA第六章习题答案一、判断无向连通图至少有一个顶点的度为1。F用一维数组G[]存储有4个顶点的无向图如下:TG[]={0,1,0,1,1,0,0,0,1,0}则顶点2和顶点0之间是有边的。若图G有环,则G不存在拓扑排序序列。T无向连通图所有顶点的度之和为偶数。T无向连通图边数一定大于顶点个数减1。F用邻接表法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。F用邻接矩
- Kruskal算法
青年之家
algorithms算法
Kruskal算法问题描述算法简析代码问题描述有一张nnn个顶点、mmm条边的无向图,且是连通图,求最小生成树。算法简析KruskalKruskalKruskal是一种求最小生成树的算法。设该图为G=(V,E)G=(V,E)G=(V,E)。最小生成树即所求为GT=(VT,ET)G_T=(V_T,E_T)GT=(VT,ET),因为图是连通的,所以最小生成树会覆盖所有的顶点,即V==VTV==V_TV
- 系统架构21 - 统一建模语言UML(下)
银龙丶裁决
软考系统架构系统架构uml
UML图UML中的图分类作用视图用例视图逻辑视图进程视图实现视图部署视图UML中的图“图”是一组元素的图形表示,大多数情况下把图画成顶点(代表事物)和弧(代表关系)的连通图。为了对系统进行可视化,可以从不同的角度画图,这样图是对系统的投影。分类UML2.0提供了13种图:类图、对象图、用例图、序列图、通信图、状态图、活动图、构件图、部署图、组合结构图、包图、交互概览图和计时图。其中,序列图、通信图
- 【图论】基环树
Texcavator
图论图论
基环树其实并不是树,是指有n个点n条边的图,我们知道n个点n-1条边的连通图是树,再加一条边就会形成一个环,所以基环树中一定有一个环,长下面这样:由基环树可以引申出基环内向树和基环外向树基环内向树如下,特点是每个点的出度为1基环外向树如下,特点是每个点的入度为1下面放点题,做到相关题目随时更新基环树+组合数学CF1454ENumberofSimplePaths先记录环上的点,每个环上的点引出去的子
- 22:算法--指定源点下的最小生成树
raindayinrain
2.1.数据结构与算法图最小生成树算法
指定源点下的最小生成树性质算法输入:图G指定的源点输入限制:图G须为无向连通图算法目标:求取一个权重之和最小的边的集合,通过此边集合,G中任意两个节点均可以相互到达。接口设计templateclassMinGenerateTree{public:classNode;typenametypedefDataStruct::GraphStruct::GraphInnerGraph;typenametyp
- Java数据结构——连通性算法+prim算法+kruskal算法
NoBug.己千之
Java数据结构java
文章目录一、图的连通性(一)、定义(二)、方法(三)、Java代码1.图的连通性检验2.源码3.输出样例二、最小生成树(一)、定义(二)、求法(三)、图与网(四)、普里姆算法1.定义2.Java代码3.输出样例(五)、克鲁斯卡尔算法1.定义2.Java代码3.输出样例一、图的连通性(一)、定义请读一遍:对无向图进行遍历时,对于连通图,仅需从图中任一顶点出发,进行深度优先搜索或广度优先搜索,便可访问
- 图的遍历算法——DFS、BFS原理及实现
W24-
数据结构数据结构队列dfs算法
文章目录图的遍历定义如何判别某些顶点被访问过深度优先搜索(Depth-First-Search)深度优先搜索的递归实现深度优先搜索的非递归实现广度优先搜索(Breadth-First-Search)广度优先搜索实现图的遍历定义图的遍历(搜索):从图的某一顶点出发,对图中所有顶点访问一次且仅访问一次。访问:抽象操作,可以是对节点进行的各种处理。连通图与非连通图都可以。但是图结构具有复杂性,不像线性表
- 图论——连通性
Albert.Jw
搜索图论
割点:1.无向图2.删去这个点及其所连边后,图不再联通点双连通图:1.无向图2.没有割点(删去任意一个点图仍联通)点双联通分量:无向图G中所有子图G’如果G’1.是点双联通子图2.不是其他点双联通子图的真子集,则G’是G的极大点双联通子图,也称点双联通分量。桥(割边):1.无向图2.删此边(不删其连着的点),剩下的图不再联通边双连通图:1.无向图2.删任意一边,剩下的图仍联通边双联通分量:无向图G
- 图(数据结构期末复习3)
一只程序媛li
数据结构复习数据结构
图的分类:有向图,无向图连通图,非连通图连通图分为强连通(有向并且形成一个环)和弱连通(有向并且连成一串但是不是一个环)图的存储用邻接矩阵存储有向图或者无向图#includeusingnamespacestd;#defineINFINITY32767//权值最大值#defineMVNUM100//最多顶点个数#defineERROR0typedefcharVertexType;//顶点的类型typ
- 数据结构--最小生成树
嘉月末
c/c++数据结构图论
最小生成树在含有n个顶点的连通网中选择n-1条边,构成一个极小连通图,并使这个连通图的边上的权值之和最小,这就是最小生成树。构造下图的最小生成树Prim(普利姆)算法从图中的任意节点出发,选择子树中节点与图中其余节点之间的最小权重边来生成子树,直到得到一棵图G的生成树为止。(以点为基础开始)时间复杂度O(n^2)普利姆算法构造最小生成树的过程Kruskal(克鲁斯卡尔)算法先构造一个只含n个顶点的
- 牛客练习赛113
温存~
算法
A.小红的基环树A-小红的基环树_牛客练习赛113(nowcoder.com)题目:定义基环树为n个节点、n条边的、没有自环和重边的无向连通图。定义一个图的直径是任意两点最短路的最大值。小红想知道,n个节点构成的所有基环树中,最小的直径是多少?思路:由题意观察可以知道,当n等于3时,最小的直径就是1,而当n大于等于4时,直径等于2.代码:#includeusingnamespacestd;intm
- 并查集与图
风影66666
面试c++动态规划贪心算法数据结构广度优先
并查集与图一、并查集概念实现原理代码实现查找根节点合并两颗树判断是否是同一棵树树的数量二、图的基本概念定义分类完全图顶点的度连通图三、图的存储结构分类邻接表邻接表的结构代码实现邻接矩阵代码实现四、图的遍历方式广度优先深度优先五、最小生成树概念Kruskal算法原理代码实现Prim算法原理代码实现六、单源最短路径概念Dijkstra原理代码实现缺陷BellmanFord原理代码实现七、多源最短路径概
- 数据结构之图
忆梦九洲
数据结构图无环图与有向无环图按存储路径方向分类按存储结构分类
图图(Graph)是比树还要难以理解和学习的“多对多”数据结构,可以认为树也是图的一种。图的知识点众多,按照存储路径的方向分,可分为无向图和有向图,按照图的存储结构分,可分为完全图与有向完全图、连通图与强连通图、连通分量与强连通分量、无环图与有向无环图,其涉及的算法则包括克鲁斯卡尔算法、普里姆算法、迪杰斯特拉算法和弗洛伊德算法等。如下图所示为图的分类。与表和树相同,图虽然有“多对多”的逻辑关系,但
- Tarjan 算法思想求强连通分量及求割点模板(超详细图解)
harry1213812138
图论算法算法tarjan强连通分量割点割边
割点定义在一个无向图中,如果有一个顶点,删除这个顶点及其相关联的边后,图的连通分量增多,就称该点是割点,该点构成的集合就是割点集合。简单来说就是去掉该点后其所在的连通图不再连通,则该点称为割点。若去掉某条边后,该图不再连通,则该边称为桥或割边。若在图G中(如下图),删除uv这条边后,图的连通分量增多,则u和v点称为割点,uv这条边称为桥或割边。显然,有割点的图不是哈密尔顿图。Tarjan算法求强连
- 超级详细的Tarjan算法
ivysister
acm题tarjan最大连通分量
有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(stronglyconnectedcomponents)。下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
- Tarjan 算法超级详解
键盘上的艺术家w
#算法-图论Tarjan算法超级详解
首先我们引入定义:1、有向图G中,以顶点v为起点的弧的数目称为v的出度,记做deg+(v);以顶点v为终点的弧的数目称为v的入度,记做deg-(v)。2、如果在有向图G中,有一条有向道路,则v称为u可达的,或者说,从u可达v。3、如果有向图G的任意两个顶点都互相可达,则称图G是强连通图,如果有向图G存在两顶点u和v使得u不能到v,或者v不能到u,则称图G是强非连通图。4、如果有向图G不是强连通图,
- 力扣刷题系列——BFS和DFS
今天也要学习哦
力扣刷题系列java算法
BFS与DFS相关算法题目录BFS与DFS相关算法题BFS1.二进制矩阵中的最短路径2.完全平方数3.单词接龙DFS1.岛屿的最大面积2.岛屿数量3.岛屿的周长4.朋友圈5.被围绕的区域6.太平洋大西洋水流问题BFS广度优先搜索(也称宽度优先搜索,缩写BFS,以下采用广度来描述)是连通图的一种遍历算法这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采
- floyd算法求最短路径
菜鸡小陈
算法c++
给定一个n个点m条边构成的无重边和自环的无向连通图。点的编号为1∼n。请问:从1到n的最短距离。去掉k条边后,从1到n的最短距离。输入格式第一行包含整数T,表示共有T组测试数据。每组数据第一行包含三个整数n,m,k。接下来m行,每行包含三个整数x,y,z,表示点x和点y之间存在一条长度为z的边。最后一行包含k个空格隔开的整数,表示去掉的边的编号。所有边按输入顺序从1到m编号。输出格式每组数据输出占
- 【数据结构】图 常见题型汇总
_mika_
【数据结构笔记】数据结构
数据结构图定义无向图的连通分量是指无向图中的极大连通子图。图的遍历是指从图中顶点出发,每个顶点只能被访问一次,如果图不是连通则从某一顶点出发无法访问到其他全部结点。无向连通图的所有顶点度之和为偶数邻接矩阵行对应入度,列对应出度,顶点的度为对应入度+出度。习题题型11.一个有28条边的非连通无向图至少有()个结点假设一种情况一个完全图+一个结点设结点个数为n+1有n(n-1)/2=28求出n为7所以
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement