牛顿迭代法

牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
中文名 牛顿迭代法 外文名 Newton’s method 别 称 牛顿-拉夫逊(拉弗森)方法 提出时间 17世纪
目录
1 产生背景
2 牛顿迭代公式
3 示例
▪ 欧几里德算法
▪ 斐波那契数列
4 C语言代码
5 C++代码
6 matlab代码
▪ 定义函数
▪ 主程序
7 Python代码
8 Fortran代码
产生背景编辑
牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。
牛顿迭代公式编辑
设r是 的根,选取 作为r的初始近似值,过点 做曲线 的切线L,L的方程为 ,求出L与x轴交点的横坐标 ,称x1为r的一次近似值。过点 做曲线 的切线,并求该切线与x轴交点的横坐标 ,称 为r的二次近似值。重复以上过程,得r的近似值序列,其中, 称为r的 次近似值,上式称为牛顿迭代公式。
用牛顿迭代法解非线性方程,是把非线性方程 线性化的一种近似方法。把 在点 的某邻域内展开成泰勒级数 ,取其线性部分(即泰勒展开的前两项),并令其等于0,即 ,以此作为非线性方程 的近似方程,若 ,则其解为 , 这样,得到牛顿迭代法的一个迭代关系式: 。
已经证明,如果是连续的,并且待求的零点是孤立的,那么在零点周围存在一个区域,只要初始值位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。 [1]
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
利用迭代算法解决问题,需要做好以下三个方面的工作:
一、确定迭代变量
在可以用迭代算法解决的问题中,至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析得出可用来结束迭代过程的条件。
示例编辑
欧几里德算法
最经典的迭代算法是欧几里德算法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
定理:gcd(a,b) = gcd(b,a mod b)
证明:a可以表示成a = kb + r,则r = a mod b。假设d是a,b的一个公约数,则有 a%d==0,b%d==0,而r = a - kb,因此r%d==0 ,因此d是(b,a mod b)的公约数
同理,假设d 是(b,a mod b)的公约数,则 b%d==0,r%d==0 ,但是a = kb +r ,因此d也是(a,b)的公约数。
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
欧几里德算法就是根据这个原理来做的,欧几里德算法又叫辗转相除法,它是一个反复迭代执行,直到余数等于0停止的步骤,这实际上是一个循环结构。其算法用C语言描述为:
1
2
3
4
5
6
7
8
9
10
11
12
13
int Gcd_2(int a,int b)/欧几里德算法求a,b的最大公约数/
{
if (a<=0 || b<=0)/预防错误/
return 0;
int temp;
while (b > 0)/b总是表示较小的那个数,若不是则交换a,b的值/
{
temp = a % b;/迭代关系式/
a = b;
b = temp;
}
return a;
}
从上面的程序我们可以看到a,b是迭代变量,迭代关系是temp = a % b;根据迭代关系我们可以由旧值推出新值,然后循环执a = b; b = temp;直到迭代过程结束(余数为0)。在这里a好比那个胆小鬼,总是从b手中接过位置,而b则是那个努力向前冲的先锋。
斐波那契数列
还有一个很典型的例子是斐波那契(Fibonacci)数列。斐波那契数列为:0、1、1、2、3、5、8、13、21、…,即 fib⑴=0; fib⑵=1;fib(n)=fib(n-1)+fib(n-2) (当n>2时)。
在n>2时,fib(n)总可以由fib(n-1)和fib(n-2)得到,由旧值递推出新值,这是一个典型的迭代关系,所以我们可以考虑迭代算法。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
int Fib(int n) //斐波那契(Fibonacci)数列
{
if (n < 1)/预防错误/
return 0;
if (n == 1 || n == 2)/特殊值,无需迭代/
return 1;
int f1 = 1,f2 = 1,fn;/迭代变量/
int i;
for(i=3; i<=n; ++i)/用i的值来限制迭代的次数/
{
fn = f1 + f2; /迭代关系式/
f1 = f2;//f1和f2迭代前进,其中f2在f1的前面
f2 = fn;
}
return fn;
}
C语言代码编辑
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
double func(double x) //函数
{
return x*x*x*x-3*x*x*x+1.5*x*x-4.0;
}
double func1(double x) //导函数
{
return 4*x*x*x-9*x*x+3*x;
}
int Newton(double *x,double precision,int maxcyc) //maxcyc 迭代次数
{
double x1,x0;
int k;
x0=*x;
for(k=0;k

include

include

using namespace std;
int main()
{
double diedai(double a,double b,double c,double d,double x);
double a,b,c,d;
double x=10000.0;
cout<<”请依次输入方程四个系数:”;
cin>>a>>b>>c>>d;
x=diedai(a,b,c,d,x);
cout<

include

include

using namespace std;

vectorv;//stl vector链型数组
vector::iterator it;//vector迭代器

int x0=5;

double a,b,c,d;

double abs(double y){ while(y<0) y=-y; return y;}

double f(double x){ return a*x*x*x+b*x*x+c*x+d;}

double fd(double x){ return 3*a*x*x+2*b*x+c;}

bool u;//用来判断是否重复

void newton(int a1,int b1,int c1,int d1)
{
for(x0=-5000;x0<=5000;x0++)//在一个大区域中逐个点用牛顿法,可找出大多数3次方程所有根
{
double x1=x0;
while(abs(f(x1))>0.001)
{
double x=x1;
x1=x-f(x)/fd(x);
}
for( it=v.begin();it!=v.end();it++)
{
if(abs((*it-x1))<0.01) {u=1; break;}
}
if(u!=1&&x1<1000000000)
{
cout<

你可能感兴趣的:(牛顿迭代法)