LeetCode 877 石子游戏(博弈论)

亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。
游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。
亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。
假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false 。

示例:
输入:[5,3,4,5]
输出:true
解释:
亚历克斯先开始,只能拿前 5 颗或后 5 颗石子 。
假设他取了前 5 颗,这一行就变成了 [3,4,5] 。
如果李拿走前 3 颗,那么剩下的是 [4,5],亚历克斯拿走后 5 颗赢得 10 分。
如果李拿走后 5 颗,那么剩下的是 [3,4],亚历克斯拿走后 4 颗赢得 9 分。
这表明,取前 5 颗石子对亚历克斯来说是一个胜利的举动,所以我们返回 true 。

提示:
2 <= piles.length <= 500
piles.length 是偶数。
1 <= piles[i] <= 500
sum(piles) 是奇数。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/stone-game
solution:
举个例子,piles=[2, 1, 9, 5],你先拿,可以拿 2 或者 5,你选择 2。
piles=[1, 9, 5],轮到对手,可以拿 1 或 5,他选择 5。
piles=[1, 9] 轮到你拿,你拿 9。
最后,你的对手只能拿 1 了。
这样下来,你总共拥有 2+9=11 颗石头,对手有 5+1=6 颗石头,你是可以赢的,所以算法应该返回 true。
你看到了,并不是简单的挑数字大的选,为什么第一次选择 2 而不是 5 呢?因为 5 后面是 9,你要是贪图一时的利益,就把 9 这堆石头暴露给对手了,那你就要输了。
这也是强调双方都很聪明的原因,算法也是求最优决策过程下你是否能赢。
这道题又涉及到两人的博弈,也可以用动态规划算法暴力试,比较麻烦。但我们只要对规则深入思考,就会大惊失色:只要你足够聪明,你是必胜无疑的,因为你是先手。
这是为什么呢,因为题目有两个条件很重要:一是石头总共有偶数堆,石头的总数是奇数。这两个看似增加游戏公平性的条件,反而使该游戏成为了一个割韭菜游戏。我们以 piles=[2, 1, 9, 5] 讲解,假设这四堆石头从左到右的索引分别是 1,2,3,4。
如果我们把这四堆石头按索引的奇偶分为两组,即第 1、3 堆和第 2、4 堆,那么这两组石头的数量一定不同,也就是说一堆多一堆少。因为石头的总数是奇数,不能被平分。
而作为第一个拿石头的人,你可以控制自己拿到所有偶数堆,或者所有的奇数堆。
你最开始可以选择第 1 堆或第 4 堆。如果你想要偶数堆,你就拿第 4 堆,这样留给对手的选择只有第 1、3 堆,他不管怎么拿,第 2 堆又会暴露出来,你就可以拿。同理,如果你想拿奇数堆,你就拿第 1 堆,留给对手的只有第 2、4 堆,他不管怎么拿,第 3 堆又给你暴露出来了。
也就是说,你可以在第一步就观察好,奇数堆的石头总数多,还是偶数堆的石头总数多,然后步步为营,就一切尽在掌控之中了。

class Solution {
public:
    bool stoneGame(vector& piles) {
        return true;
    }
};

你可能感兴趣的:(博弈论)