Toeplitz定理推广和应用

Toeplitz定理推广和应用

Toeplitz定理

n , k ∈ N n,k \in \mathbb{N} n,kN t n k ≥ 0 t_{nk}\ge0 tnk0 ∑ k = 1 n t n k = 1 \sum_{k=1}^{n}t_{nk}=1 k=1ntnk=1 lim ⁡ n → + ∞ t n k = 0 \lim_{n\rightarrow +\infty}t_{nk}=0 limn+tnk=0。如果 lim ⁡ n → + ∞ a n = a \lim_{n \rightarrow + \infty}a_n=a limn+an=a,则

lim ⁡ n → + ∞ ∑ k = 1 n t n k ⋅ a k = a \lim_{n \rightarrow +\infty} \sum_{k=1}^{n}t_{nk} \cdot a_k=a n+limk=1ntnkak=a

证略

推广 把和为1改为和的极限为1

n , k ∈ N n,k \in \mathbb{N} n,kN t n k ≥ 0 t_{nk}\ge0 tnk0 lim ⁡ n → + ∞ ∑ k = 1 n t n k = 1 \lim_{n → +\infty}\sum_{k=1}^{n}t_{nk}=1 limn+k=1ntnk=1 lim ⁡ n → + ∞ t n k = 0 \lim_{n\rightarrow +\infty}t_{nk}=0 limn+tnk=0。如果 lim ⁡ n → + ∞ a n = a \lim_{n \rightarrow + \infty}a_n=a limn+an=a,则

lim ⁡ n → + ∞ ∑ k = 1 n t n k ⋅ a k = a \lim_{n \rightarrow +\infty} \sum_{k=1}^{n}t_{nk} \cdot a_k=a n+limk=1ntnkak=a

证明:

S n = ∑ k = 1 n t n k S_n=\sum_{k=1}^{n}{t_{nk}} Sn=k=1ntnk
因为 lim ⁡ n → + ∞ t n k = 1 > 0 \lim_{n→ +\infty}t_{nk}=1 \gt 0 limn+tnk=1>0,因此 ∃ N 1 ∈ N \exist N_1∈ \mathbb{N} N1N,当 n > N 1 n \gt N_1 n>N1时, S n > 0 S_n \gt 0 Sn>0

n > N 1 n \gt N_1 n>N1时,令 b n k = t n k / S n b_{nk}=t_{nk}/S_n bnk=tnk/Sn,则

b n k ≥ 0 b_{nk} \ge 0 bnk0并且
∑ k = 1 n b n k = 1 \sum_{k=1}^n{b_{nk}=1} k=1nbnk=1 lim ⁡ n → + ∞ b n k = 0 \lim_{n→ +\infty}b_{nk}=0 limn+bnk=0

根据Toeplitz定理

lim ⁡ n → + ∞ ∑ k = 1 n b n k ⋅ a k = a \lim_{n \rightarrow +\infty} \sum_{k=1}^{n}b_{nk} \cdot a_k=a n+limk=1nbnkak=a

所以

lim ⁡ n → + ∞ ∑ k = 1 n t n k ⋅ a k = lim ⁡ n → + ∞ S n ⋅ ∑ k = 1 n b n k ⋅ a k = a \lim_{n \rightarrow +\infty} \sum_{k=1}^{n}t_{nk} \cdot a_k= \lim_{n \rightarrow +\infty} S_n ⋅ \sum_{k=1}^{n}b_{nk} \cdot a_k = a n+limk=1ntnkak=n+limSnk=1nbnkak=a

定理的应用

1. 设 lim ⁡ n → + ∞ a n = a \lim_{n\rightarrow+\infty} a_n=a limn+an=a,证明

lim ⁡ n → + ∞ a 1 + 2 a 2 + ⋯ + n a n n 2 = a 2 \lim_{n\rightarrow+\infty} \frac{a_1+2a_2+\cdots+na_n}{n^2}=\frac{a}{2} n+limn2a1+2a2++nan=2a

证明:

t n k = 2 k n 2 t_{nk}=\frac{2k}{n^2} tnk=n22k,易知 t n k ≥ 0 t_{nk} \ge 0 tnk0 lim ⁡ n → + ∞ ∑ k = 1 n t n k = 1 \lim_{n\rightarrow+\infty}\sum_{k=1}^{n}t_{nk}=1 limn+k=1ntnk=1 lim ⁡ n → + ∞ t n k = 0 \lim_{n\rightarrow+\infty}t_{nk}=0 limn+tnk=0

故由Toeplitz定理的推广知,

lim ⁡ n → + ∞ t n k ⋅ a k = a \lim_{n\rightarrow+\infty} t_{nk} ⋅ a_k=a n+limtnkak=a


lim ⁡ n → + ∞ 2 ⋅ a 1 + 2 a 2 + ⋯ + n a n n 2 = a \lim_{n\rightarrow+\infty} 2⋅ \frac{a_1+2a_2+\cdots+na_n}{n^2}=a n+lim2n2a1+2a2++nan=a
左边乘以 1 2 \frac{1}{2} 21,即得

lim ⁡ n → + ∞ a 1 + 2 a 2 + ⋯ + n a n n 2 = a 2 \lim_{n\rightarrow+\infty} \frac{a_1+2a_2+\cdots+na_n}{n^2}=\frac{a}{2} n+limn2a1+2a2++nan=2a

2. 设 lim ⁡ n → + ∞ a n = a \lim_{n\rightarrow+\infty} a_n=a limn+an=a 0 < q < 1 0<q<1 0<q<1 证明

lim ⁡ n → + ∞ ( a n + a n − 1 ⋅ q + ⋯ + a 1 ⋅ q n − 1 ) = a 1 − q \lim_{n\rightarrow+\infty} \left( a_n + a_{n-1} ⋅ q+ \cdots + a_1 ⋅ q^{n-1} \right) = \frac{a}{1-q} n+lim(an+an1q++a1qn1)=1qa

证明:

t n k = ( 1 − q ) ⋅ q n − k t_{nk}=(1-q)⋅ q^{n-k} tnk=(1q)qnk,易知 t n k ≥ 0 t_{nk} \ge 0 tnk0 lim ⁡ n → + ∞ ∑ k = 1 n t n k = 1 \lim_{n\rightarrow+\infty}\sum_{k=1}^{n}t_{nk}=1 limn+k=1ntnk=1 lim ⁡ n → + ∞ t n k = 0 \lim_{n\rightarrow+\infty}t_{nk}=0 limn+tnk=0

故由Toeplitz定理的推广知,

lim ⁡ n → + ∞ t n k ⋅ a k = a \lim_{n\rightarrow+\infty} t_{nk} ⋅ a_k=a n+limtnkak=a


lim ⁡ n → + ∞ ( 1 − q ) ( a 1 ⋅ q n − 1 + ⋯ + a n − 1 ⋅ q + a n ) = a \lim_{n\rightarrow+\infty} \left(1-q\right) \left( a_1⋅ q^{n-1} + \cdots + a_{n-1} ⋅ q + a_n \right)=a n+lim(1q)(a1qn1++an1q+an)=a

左边除以 1 − q 1-q 1q,即得
lim ⁡ n → + ∞ ( a n + a n − 1 ⋅ q + ⋯ + a 1 ⋅ q n − 1 ) = a 1 − q \lim_{n\rightarrow+\infty} \left( a_n + a_{n-1} ⋅ q+ \cdots + a_1 ⋅ q^{n-1} \right) = \frac{a}{1-q} n+lim(an+an1q++a1qn1)=1qa

3. 设 lim ⁡ n → + ∞ a n = a \lim_{n\rightarrow+\infty} a_n=a limn+an=a lim ⁡ n → + ∞ b n = b > 0 \lim_{n\rightarrow+\infty} b_n=b > 0 limn+bn=b>0,且 b n > 0 , ∀ n ∈ N b_n \gt 0, ∀ n ∈ \mathbb{N} bn>0,nN,证明

lim ⁡ n → + ∞ a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 n = a b \lim_{n\rightarrow+\infty} \frac{a_1b_n+a_2b_{n-1} + \cdots + a_nb_1}{n}=ab n+limna1bn+a2bn1++anb1=ab

证明:

t n k = b n − k + 1 n ⋅ b t_{nk}=\frac{b_{n-k+1}}{n ⋅ b} tnk=nbbnk+1,易知 t n k ≥ 0 t_{nk} \ge 0 tnk0 lim ⁡ n → + ∞ t n k = 0 \lim_{n\rightarrow+\infty}t_{nk}=0 limn+tnk=0

lim ⁡ n → + ∞ ∑ k = 1 n t n k = lim ⁡ n → + ∞ 1 b ⋅ b 1 + b 2 + ⋯ + b n n = 1 b ⋅ lim ⁡ n → + ∞ b n = 1 \lim_{n\rightarrow+\infty}\sum_{k=1}^{n}t_{nk}=\lim_{n\rightarrow+\infty} \frac{1}{b}⋅ \frac{b_1+b_2+\cdots+b_n}{n}=\frac{1}{b}⋅ \lim_{n\rightarrow+\infty}b_n=1 limn+k=1ntnk=limn+b1nb1+b2++bn=b1limn+bn=1

故由Toeplitz定理的推广知,

lim ⁡ n → + ∞ t n k ⋅ a k = a \lim_{n\rightarrow+\infty} t_{nk} ⋅ a_k=a n+limtnkak=a


lim ⁡ n → + ∞ b n n ⋅ b ⋅ a 1 + b n − 1 n ⋅ b ⋅ a 2 + b 1 n ⋅ b ⋅ a n = lim ⁡ n → + ∞ a 1 ⋅ b n + a 2 ⋅ b n − 1 ⋯ + a n ⋅ b 1 n ⋅ b = a \lim_{n\rightarrow+\infty} \frac{b_n}{n⋅ b}⋅ a_1 + \frac{b_{n-1}}{n⋅ b}⋅ a_2 + \frac{b_1}{n⋅ b}⋅ a_n=\lim_{n\rightarrow+\infty} \frac{a_1⋅ b_n + a_2⋅ b_{n-1} \cdots + a_n⋅ b_1}{n⋅ b}=a n+limnbbna1+nbbn1a2+nbb1an=n+limnba1bn+a2bn1+anb1=a
两边同时乘以 b b b,即得
lim ⁡ n → + ∞ a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 n = a b \lim_{n\rightarrow+\infty} \frac{a_1b_n+a_2b_{n-1} + \cdots + a_nb_1}{n}=ab n+limna1bn+a2bn1++anb1=ab

4. 设 lim ⁡ n → + ∞ a n = a \lim_{n\rightarrow+\infty}a_n=a limn+an=a b n ≥ 0 ( n ∈ N ) b_n \ge 0 (n∈ \mathbb{N}) bn0(nN) lim ⁡ n → + ∞ ( b 1 + b 2 + ⋯ + b n ) = S \lim_{n\rightarrow+\infty} \left( b_1 +b_2 + \cdots + b_n\right)=S limn+(b1+b2++bn)=S,证明:

lim ⁡ n → + ∞ ( a 1 ⋅ b n + a 2 ⋅ b n − 1 + ⋯ + a n ⋅ b 1 ) = a ⋅ S \lim_{n\rightarrow+\infty} \left( a_1⋅ b_n + a_2⋅ b_{n-1} + \cdots + a_n⋅ b_1 \right)=a⋅ S n+lim(a1bn+a2bn1++anb1)=aS

证明:

情况1. S = 0 S=0 S=0,则 b n = 0 b_n=0 bn=0,题目得证

情况2. S > 0 S\gt 0 S>0,令 S n = b 1 + b 2 + ⋯ + b n S_n=b_1+b_2+\cdots+b_n Sn=b1+b2++bn b n = S n − S n − 1 b_n=S_n-S_{n-1} bn=SnSn1,则 lim ⁡ n → + ∞ b n = lim ⁡ n → + ∞ ( S n − S n − 1 ) = S − S = 0 \lim_{n\rightarrow+\infty}b_n=\lim_{n\rightarrow+\infty}\left( S_n - S_{n-1}\right)=S-S=0 limn+bn=limn+(SnSn1)=SS=0

t n k = b n − k + 1 S t_{nk}=\frac{b_{n-k+1}}{S} tnk=Sbnk+1 易知 t n k ≥ 0 t_{nk} \ge 0 tnk0 lim ⁡ n → + ∞ ∑ k = 1 n t n k = 1 \lim_{n\rightarrow+\infty}\sum_{k=1}^{n}t_{nk}=1 limn+k=1ntnk=1 lim ⁡ n → + ∞ t n k = 0 \lim_{n\rightarrow+\infty}t_{nk}=0 limn+tnk=0

故由Toeplitz定理的推广知,

lim ⁡ n → + ∞ t n k ⋅ a k = a \lim_{n\rightarrow+\infty} t_{nk} ⋅ a_k=a n+limtnkak=a


lim ⁡ n → + ∞ a 1 ⋅ b n + a 2 ⋅ b n − 1 + ⋯ + a n ⋅ b 1 S = a \lim_{n\rightarrow+\infty} \frac{a_1⋅ b_n + a_2⋅ b_{n-1} + \cdots + a_n⋅ b_1}{S}=a n+limSa1bn+a2bn1++anb1=a
两边同乘以 S S S,即得

lim ⁡ n → + ∞ ( a 1 ⋅ b n + a 2 ⋅ b n − 1 + ⋯ + a n ⋅ b 1 ) = a ⋅ S \lim_{n\rightarrow+\infty} \left( a_1⋅ b_n + a_2⋅ b_{n-1} + \cdots + a_n⋅ b_1 \right)=a⋅ S n+lim(a1bn+a2bn1++anb1)=aS

你可能感兴趣的:(数学,数学分析,极限,Toeplitz定理)