搞事:代码找茬

搞事:代码找茬_第1张图片

最近老是想起陈芝麻烂谷子的事情,说明工龄所剩无几了。

- 1 -

又是在那遥远的 2009 年,那个“杯具”已经不是杯具的年头,度厂办个算法比赛,办出了点儿杯具的味道。

比赛的名字叫“百度之星”,那些年在校园里影响力还蛮大的(好像现在还是),大概赛制就是通过初赛、复赛、决赛这么几轮,选出几个社会主义四有青年瓜分奖金。值得一提的是,头两年(05、06)冠军都被楼教主承包了。

为什么说有点杯具的味道呢,因为那年的初赛结束以后,度厂搞了个骚操作,把所有参赛选手提交的代码导出来,打了个包,发在贴吧里。

于是贴吧突然就炸了。

- 2 -

要知道初赛是网络赛,各个学校的 ACM(或OI) 集训队的队员们很可能都是凑在机房一起参与,毕竟毛主席教导我们人多力量大嘛。

搞事:代码找茬_第2张图片

所以这就有点意思了:如果同一个题,两份代码长得很像,说明互相抄袭概率就很大。

问题是参赛人数有点多,两两对比这 O(n^2) 的时间复杂度,靠人肉有点儿吃不消;但这么大一个瓜,光看不吃又有点可惜了。

那么这瓜到底该怎么吃呢?

- 3 -

还好,作为一个竞赛战五渣的我,通过初赛的能力没有,搞事情的能力还是有一点的。

搞事:代码找茬_第3张图片

为了对比两份代码的相似度,那我首先得找到一个指标。

作为一个善于 作弊 思考的社会主义三无青年,我估计作弊者在拿到弊友代码后不会直接提交,至少会做些更换变量名之类操作;但竞赛时间紧迫,大概率来不及修改整体框架。

那么,只要我能算出修改的程度,就能判断相似度了:假设两份代码长度分别是 m、n,修改了 x 个字符, 我们大致可以把 100% - x / ((m + n) / 2) 当成相似度(没被修改的字符占比)。

但如何计算这修改的程度呢?毕竟修改前后代码长度很可能不同,不适合通过逐字比较来找到差别。

- 4 -

既然直接处理两段代码有点棘手,那不妨先考虑一下简单的 case 。

比如说要将字符串 "a" 改成 "b",这个简单,只要改一个字符就行。

又比如说要将字符串 "a" 改成 "ab",这个也简单,只要添加一个字符就行。

再比如说要将字符串 "ab" 改成 "b",这个依然简单,只要删除一个字符就行。

如果我能算出将一段字符串通过添加、删除、修改三种操作修改成另一个字符串的最少操作次数,应该就能把这瓜给吃了。

搞事:代码找茬_第4张图片

好像是找到了方向,但是要怎么实现呢?

- 5 -

既然直接处理两段代码还是有点棘手,那不妨再考虑一下稍微复杂一点的 case ,比如把字符串 X = "baidu" 变成 Y = "bytedance"。

首先,因为 X[0] 和 Y[0] 相同,我们可以把问题简化成:将 "aidu" 变成 "ytedance",即 X[1..4] => Y[1..8](后面简记为 X[1:] => Y[1:])。

接着,X[1] = 'a', Y[1] = 'y',如上一节所说,这时候我们有三种选择:

  • 添加:给 X 添加 'y' ,当成 "byaidu",于是问题简化为将 "aidu" 变成 "tedance",即 X[1:] => Y[2:];(注意,我们在这里把该操作当成一个思维实验就好,不需要真的修改 X ,所以这里 "aidu" 对应 X[1:] 而不是 X[2:])
  • 删除:从 X 中删掉 'a' ,当成 "bidu",问题简化为将 "idu" 变成 ytedance",即 X[2:] => Y[1:];
  • 修改:把 X 这个 'a' 改成 'y',当成 '"byidu",问题简化为将 "idu" 变成 "tedance",即 X[2:] => Y[2:];

这三种操作中,后续需要的修改次数最少的那个,再加上 1,就是我们把 X[1:] 改成 Y[1:] 所需的最少次数。

依此类推,如果我们将 X[i:] 变成 Y[j:] 需要 f(i, j) 次操作,由上可得到这样一个公式:

if X[i] == Y[j]:
  f(i, j) = f(i + 1, j + 1)
else:
  f(i, j) = 1 + min(
    f(i, j + 1),    #添加
    f(i + 1, j),    #删除
    f(i + 1, j + 1) #修改
  )

也就是说,我们可以用子问题的最优解来推导出问题的最优解,如果用不说人话的方式,就叫做该问题存在最优子结构

这么一看,代码是不是呼之欲出了?

- 6 -

啰嗦了这么多,不能忘了大佬的教导:

搞事:代码找茬_第5张图片

说干就干,把上面推导的公式落地成代码,so easy:

def change(x, y):
  def f(i, j):
    if x[i] == y[j]:
      return f(i + 1, j + 1)
    else:
      return 1 + min(
        f(i, j + 1),
        f(i + 1, j),
        f(i + 1, j + 1)
      )
  return f(0, 0)
    
print change("baidu", "bytedance") 

然后跑起来一看:

$ python change.py 
Traceback (most recent call last):
  File "change.py", line 13, in 
    print change("baidu", "bytedance")
    ... #省略一大段
  File "change.py", line 3, in f
    if x[i] == y[j]:
IndexError: string index out of range

image

- 7 -

"index out of range",越界了 —— 显然,这里漏掉了递归的终止条件。

不过这个简单:如果 X 越界了,说明这时 i == len(X),那么 Y 还剩几个字符,我们都加上就行,即还需要 len(Y) - j 次操作;或者 Y 越界了,说明 j == len(Y),我们把 X 剩下的几个字符删掉,即 len(X) - i 次操作。

于是代码变成了:

def change(x, y):
  def f(i, j):
    if i == len(x):
      return len(y) - j
    if j == len(y):
      return len(x) - i

    if x[i] == y[j]:
      return f(i + 1, j + 1)
    else:
      return 1 + min(
        f(i, j + 1),
        f(i + 1, j),
        f(i + 1, j + 1)
      )
  return f(0, 0)

print change("baidu", "bytedance")

跑起来效果杠杠的,马上就得到了 7,算得没毛病。

只可惜这代码还没法用 —— 别说跑那些参赛代码,就连长度为 16 的两个字符串都跑不出结果……

- 8 -

稍微分析一下我们就会发现,它竟然是指数时间复杂度的:

不过仔细观察上图(不仔细也没关系,我给红色高亮了),我们可以发现,为了计算 f(i, j),我们需要计算 f(i + 1, j + 1);而且它也被用于计算 f(i, j + 1) 和 f(i + 1, j) 。

这意味着这个问题存在重复子问题,类似于我们用 f(i) = f(i - 1) + f(i - 2) 计算 飞波纳妾 fibonacci 数列。

因此我们完全可以将 f(i, j) 存下来、避免重复计算,就像这样:

def change(x, y):
  cache = {}
  def f(i, j):
    if i == len(x):
      return len(y) - j
    if j == len(y):
      return len(x) - i

    if (i, j) not in cache:
      if x[i] == y[j]:
        ans = f(i + 1, j + 1)
      else:
        ans = 1 + min(
          f(i, j + 1),
          f(i + 1, j),
          f(i + 1, j + 1)
        )
      cache[(i, j)] = ans

    return cache[(i, j)]

  return f(0, 0)

注:实际上这里也可以直接用一个二维数组 f[i][j] 来保存 f(i, j),对 C/C++ 来说实现会更容易,读写效率也更高。

优化以后,因为每个 f(i, j) 只需要计算 1 次、并且可以在常数时间里完成(因为子问题已经计算好了),我们将时间复杂度降到了 O(m * n) ,从而可以在短时间内计算出结果了。

- 9 -

在这个问题里,还有一个很重要的特性是,我们在计算 f(i, j) 的时候,并不关心从 f(0, 0) 到 f(i, j) 的推导过程,或者说从 f(0, 0) 推导到 f(i, j) 的过程对后续计算 f(i, j) 没有任何影响。用不说人话的方式,这就叫做无后效性

注意,无后效性并不是对所有问题都成立的。

比如在一个 N * N 的迷宫里寻找从坐标 (1, 1) 走到 (N, N) 的一条路径,我们在使用 BFS 或 DFS 搜索时需要将路过的坐标做好标记,避免再次走到,因此从 (1, 1) 到 (x, y) 的路径是会影响从 (x, y) 到 (N, N) 的路径,不满足无后效性。

汇总一下前面提到的这个问题的几个特点: 

  • 最优子结构
  • 重复子问题
  • 无后效性

—— 这不就是标准的 动态规划 问题嘛!对应的,第 5 节我们推导出的公式,就是这个动态规划问题的状态转移方程了!

搞事:代码找茬_第6张图片

由于满足这几个特性,我们实际上可用迭代的方式,从 f(m, n) 倒推出 f(0, 0),这样可以使用循环而不是递归,进一步提高代码的运行效率。

另外,对于同一个动态规划问题,状态转移方程也可以不止有一种写法,比如我们可以定义 g(i, j) 为将 X[1..i] 变为 Y[1..j] 的最小操作次数,于是:

if X[i] == Y[j]:
  g(i, j) = g(i - 1, j - 1)
else:
  g(i, j) = 1 + min(
    g(i, j - 1),
    g(i - 1, j),
    g(i + 1, j + 1)
  )

基于这一版状态转移方程,我们就可以从 f(0, 0) 开始逐步计算出 f(m, n)。

具体代码就不在这里贴了,感兴趣的同学可以自己写写看,注意边界值的处理就好。

实际上,这个算法叫做编辑距离,英文名 Levenshtein distance,是一个和普京同名、姓 Levenshtein 的战斗民族大佬在 1965 年提出的算法;该算法经典到 php 的标准库里竟然包含了一个 levenshtein 函数(可见php的作者真是太闲了)。

- a -

还没完,在追求性能和效果的路上我们还能走得更远,根据代码本身的特性,我们还有一些优化可以做。

比如说代码的注释是可以先删掉再比较。

比如说代码里的字符串也可以删掉再比较。

比如说代码里的空格,貌似也不影响我们的相似度对比。

通过这样的操作,我们可以大幅缩短了需要对比的代码长度,对于 O(m*n) 的算法而言,这个改善是很可观的。

此外,当时下场切瓜的另一位瓜友将这个思路推到了极致:既然我们认为代码的整体框架不变、改变的只是变量名这些东西,那我们直接把所有字母、数字、空格等字符全删除,只留下标点符号来代表代码的框架,不是更香吗?

这样我们既提升了计算的效率,又进一步提升了计算的效果。

值得一提的是,该瓜友用的不是编辑距离,而是另一个经典的动态规划算法“最长公共子序列(LCS)”。

- b -

啰嗦了这么多,终于可以写总结了:

  • 计算两个文本的相似度,可以使用编辑距离或者最长公共子序列算法;这两个都是典型的动态规划算法;
  • 动态规划问题需要满足最优子结构、重复子问题、无后效性;
  • 要解决动态规划问题,先定义状态,推导状态转义方程,再编码;可以用递归也可以用迭代,前者实现简单,后者运行更快;
  • 搞事情要考虑后果,本不应该把参赛账号名也直接公开,结果是那次比赛有些人面子上有点不好看;不过年轻时谁没犯点错呢,除了自己谁又还记得呢?

最后,“编辑距离” 是个 LeetCode 的原题(No. 72,传送门),;“最长公共子序列” 也是个 LeetCode 的原题(No. 1143,传送门),感兴趣的同学也别错过。

都看到这儿了,帮忙点个 “赞” 或分享给你的小伙伴吧,感谢~


推荐阅读:


欢迎关注

weixin1.png

你可能感兴趣的:(动态规划,编辑距离)