- 视觉SLAM十四讲学习笔记——第十讲 后端优化(2)
晒月光12138
视觉SLAM十四讲学习笔记slamubuntu
上文提到考虑全局的后端优化计算量非常大,因此在计算增量方程时,借助H矩阵的稀疏性加速运算。但是随着时间的推移,累积的相机位姿和路标数量还是会导致计算量过大,以上一节的示例代码数据为例:16张图像,共提取到22106个特征点,这些特征点共出现了83718次。对于一个20Hz更新速度,上述的数据量甚至还不到1s的内容,因此在求解大规模定位建图问题时,一定要控制BA的规模。这里主要有两种解决思路:(1)
- 视觉slam十四讲学习笔记(六)视觉里程计 1
苦瓜汤补钙
视觉SLAM十四讲笔记机器学习ubuntu
本文关注基于特征点方式的视觉里程计算法。将介绍什么是特征点,如何提取和匹配特征点,以及如何根据配对的特征点估计相机运动。目录前言一、特征点法1特征点2ORB特征FAST关键点BRIEF描述子3特征匹配二、实践:特征提取和匹配三、2D-2D:对极几何1对极约束2本质矩阵3单应矩阵四、实践:对极约束求解相机运动五、三角测量总结前言1.理解图像特征点的意义,并掌握在单幅图像中提取出特征点,及多幅图像中匹
- 视觉SLAM十四讲学习笔记——第五讲 相机与图像
晒月光12138
视觉SLAM十四讲学习笔记自动驾驶计算机视觉人工智能
这一讲主要内容就是了解摄像机的成像模型以及OpenCV的使用。1.四种坐标系坐标系基本描述世界坐标系因为摄像机和物体可以随便摆放在空间中的任何位置,所以我们必须用一个固定的坐标系来描述空间中任何物体的位置和摄像机的位置和朝向,这个基准坐标系我们称之为世界坐标系。在计算机视觉中,我们通常把世界坐标系定义为摄像机坐标系或者所观测的物体的中心。摄像机坐标系摄像机坐标系的原点是摄像机的光心,X、Y轴分别平
- 视觉slam十四讲学习笔记(四)相机与图像
苦瓜汤补钙
视觉SLAM十四讲笔记相机机器学习
理解理解针孔相机的模型、内参与径向畸变参数。理解一个空间点是如何投影到相机成像平面的。掌握OpenCV的图像存储与表达方式。学会基本的摄像头标定方法。目录前言一、相机模型1针孔相机模型2畸变单目相机的成像过程3双目相机模型4RGB-D相机模型二、图像计算机中图像的表示三、图像的存取与访问1安装OpenCV2存取与访问总结前言前面介绍了“机器人如何表示自身位姿”的问题,部分地解释了SLAM经典模型中
- ORB-SLAM3运行自制数据集进行定位教程
极客范儿
ORB-SLAM━═━═━◥MR◤━═━═━IMUORB-SLAM3
目前手上有一个特定的任务,做应急救援的视觉SLAM,目前公共数据集比较少,考虑自建数据集,从网络上爬虫火灾、地震的等手机录制的视屏,应用一些现有成熟ORB-SLAM3系统到这个数据集上看效果,然后根据效果得到一些模型改进思路。文章目录一、系统配置二、制作数据集1、脚本编写2、配置文件编写3、录制视频素材4、修改CMakeLists.txt5、编译运行一、系统配置系统版本ubuntu20.04Ope
- 视觉SLAM十四讲学习笔记(二)三维空间刚体
苦瓜汤补钙
视觉SLAM十四讲笔记计算机视觉算法
哔哩哔哩课程连接:视觉SLAM十四讲ch3_哔哩哔哩_bilibili目录一、旋转矩阵1点、向量、坐标系2坐标系间的欧氏变换3变换矩阵与齐次坐标二、实践:Eigen(1)运行报错记录与解决三、旋转向量和欧拉角1旋转向量2欧拉角四、四元数1四元数的定义2四元数的运算3用四元数表示旋转4四元数到旋转矩阵的转换五、实践:Eigen(2)useGeometryvisualizeGeometry总结前言问题
- 视觉slam十四讲学习笔记(三)李群与李代数
苦瓜汤补钙
视觉SLAM十四讲笔记人工智能学习
1.理解李群与李代数的概念,掌握SO(3),SE(3)与对应李代数的表示方式。2.理解BCH近似的意义。3.学会在李代数上的扰动模型。4.使用Sophus对李代数进行运算。目录前言一、李群李代数基础1群2李代数的引出3李代数的定义4李代数so(3)5李代数se(3)二、指数与对数映射1SO(3)上的指数映射2SE(3)上的指数映射三、李代数求导与扰动模型1BCH公式与近似形式2SO(3)李代数上的
- 视觉SLAM十四讲学习笔记(一)初识SLAM
苦瓜汤补钙
计算机视觉人工智能
目录前言一、传感器1传感器分类2相机二、经典视觉SLAM框架1视觉里程计2后端优化3回环检测4建图5SLAM系统三、SLAM问题的数学表述四、Ubuntu20.04配置SLAM十四讲前言SLAM:SimultaneousLocalizationandMapping同时定位与地图构建(建图)。搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环地的模型。同时储计自己的运动。视觉SLA
- 【SLAM14讲编译依赖软件源码版本方面等问题汇总】
终问鼎
自动驾驶-SLAMc++自动驾驶buglinuxubuntu
"逆转鹈鹕”0.视觉SLAM十四讲1.ch3-------Eigen32.ch4-------Sophus2.ch5-------JoinMap3.ch63.1---ceres3.2---g2o4.ch7--视觉里程计5.--ch8associate.py6.--ch9project以下是本人在学习SLAM中遇到的全部问题汇总(主要是依赖和软件方面的)。0.视觉SLAM十四讲1.ch3------
- 《视觉SLAM十四讲》第九讲前段实践中g2o实践代码报错解决方法
大二哈
在《视觉SLAM十四讲》中针对于g2o初始化部分代码是无法执行的,在高博的Git上的代码也是无法编译的,会报错:error:nomatchingfunctionforcallto‘g2o::BlockSolver>::BlockSolver(g2o::BlockSolver>::LinearSolverType*&)’定位报错的代码段如下:typedefg2o::BlockSolver>Block
- 计算机视觉中的Homography单应矩阵应用小结
CS_Zero
SLAM计算机视觉CV计算机视觉slam几何学
计算机视觉中的Homography(单应)矩阵应用小结Homography矩阵在StructurefromMotion(SfM)或三维重建、视觉SLAM的初始化过程有着重要应用,本文总结了单应矩阵出现场景与常见问题求解。文章目录计算机视觉中的Homography(单应)矩阵应用小结单应矩阵的推导单应矩阵的求解与分解位姿问题单应矩阵的推导一般地,单应模型出现的前提条件是空间点分布在同一个平面上,例外
- 【视觉SLAM十四讲学习笔记】第六讲——状态估计问题
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- 【视觉SLAM十四讲学习笔记】第六讲——非线性最小二乘
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- INDEMIND双目惯性模组运行实时ORB-SLAM3教程
极客范儿
ORB-SLAM━═━═━◥MR◤━═━═━ORB-SLAM3INDEMINDROSubuntu20.04imu
现在实验室视觉SLAM已经不够满足,所以需要多模态融合,正巧购入高翔博士推荐的INDEMIND双目惯性模组,根据官方例程在中使用ROS接入ORB-SLAM3,这回有SDK及ORB-SLAM3安装过程中的各种常见性问题解决方法及安装细节,与官网教程略有不同,列举所有默认安装的依赖,做以记录。文章目录实验环境一、SDK安装1、SDK下载及准备安装2、安装依赖3、然后使用git下载SDK4、准备安装SD
- 科普类(双目视觉)——快速索引
JANGHIGH
科普类无人驾驶快速索引自动驾驶
科普类(双目视觉)——快速索引科普类——双目视觉在无人驾驶汽车中的应用(一)科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)科普类——双目视觉系统在无人驾驶汽车中的安装位置(四)科普类——基线的设计对于系统的性能的直接影响(五)科普类——百度Apollo使用的双目系统的硬件型号(六)科普类——进行基线设计、系统测试和优化的立体视
- 科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)
JANGHIGH
科普类无人驾驶汽车人工智能
科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)在无人驾驶汽车中,视觉SLAM(SimultaneousLocalizationandMapping,即同时定位与地图构建)是一种关键技术,它允许车辆在未知环境中进行自我定位和地图构建。双目视觉系统在视觉SLAM中的应用起到了以下作用:精确定位:双目视觉系统通过计算两幅图像之间的视差,可以提供精确的深度信息。这些信息有助于SLAM算法更准确地估
- 【ORB-SLAM2源码梳理1】以单目mono_tum.cc为例,构建SLAM系统(含mono_tum.cc、System.cc关键代码解析)
Jay_z在造梦
ORB-SLAM2c++slamorb
文章目录前言一、进入mono_tum.cc1.导入TUM数据集图片:LoadImages()2.构建SLAM系统:System3.系统构建结束,开启跟踪线程1)一帧帧地读取对应路径下的rgb图像:2)将图像帧传入Tracking线程,开始一系列操作(关键):二、代码导图前言因为对于视觉SLAM而言,单目涉及初始化等步骤,相对于双目和RGBD较为复杂,故从单目学起。学习记录。一、进入mono_tum
- 手把手带你死磕ORBSLAM3源代码(六十四) LocalMapping.cc LocalMapping Run
安城安
数据库服务器网络运维vimlinuxc语言
目录一.前言二.代码2.1完整代码一.前言以下是对该方法功能的详细解释:mbFinished被设置为false,表示局部映射过程尚未完成。方法进入一个无限循环,这是因为在视觉SLAM中,局部映射是一个持续进行的过程,需要不断地处理新的关键帧和地图点。通过调用SetAcceptKeyFrames(false)方法,局部映射告诉追踪器(Tracker)它目前正在忙,不应该接受新的关键帧。这是为了确保局
- 视觉SLAM十四讲|【四】误差Jacobian推导
影子鱼Alexios
algorithm机器学习机器人
视觉SLAM十四讲|【四】误差Jacobian推导预积分误差递推公式ω=12((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))\omega=\frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g))ω=21((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))其中,wbkw_b^kw
- 视觉SLAM十四讲|【六】基于特征匀速模型的重投影误差计算形式
影子鱼Alexios
algorithm控制理论机器学习机器人人工智能
视觉SLAM十四讲|【六】基于特征匀速模型的重投影误差计算形式基本推导方法无时间戳延迟时,残差计算流程:世界坐标系中的第lll个地图点变换到相机坐标系下为flw=[x,y,z]Tf_l^w=[x,y,z]^Tflw=[x,y,z]T变换到相机坐标系下为flci=RcbRwbiT(flw−pwbi)+pcbf_l^{c_i}=R_{cb}R_{wb_i}^T(f_l^w-p_{wb_i})+p_{c
- 《SLAM十四讲》Ch7编译报错
Prejudices
SLAMSLAM
《SLAM十四讲》Ch7编译报错原因:视觉SLAM书上的程序使用的g2o版本比较旧了,使用的是c++11版本的g2o。而自己在编译g2o的时候编译的是最新版本的g2o,里面大量使用了c++14标准库的一些新特性,比如std::index_sequence等等。而书上的CMakeLists.txt默认使用的是c++11进行cmake编译,所以报错解决:CMakeLists.txt中更改如下:set(
- openvslam------slam解读系列
xiechaoyi123
SLAM系列slamoptimization
是什么:openvslam是日本先进工业科技研究(NationalInstituteofAdvancedIndustrialScienceandTechnology)所于2019年5月20日开源的视觉SLAM框架;github源码地址:https://github.com/xdspacelab/openvslam干什么的:先上图:通过不同类型的相机(单目,双目,RGBD,鱼眼或者全景相机)拍摄的序
- ORB_SLAM3:IMU初始化过程梳理以及自己的理解
追风筝的人~TH
ORB_SLAM3计算机视觉人工智能c++
LocalMapping线程中IMU初始化:1、为什么要进行初始化?因为无法保证世界坐标系(单目初始化参考关键帧)的Z轴正好与重力方向平行,二者有角度,计算该角度的过程就是IMU初始化的过程。2、IMU初始化过程中不断优化尺度,在单目相机的视觉SLAM中,尺度指的是场景中真实物体的物理尺寸与它在相机图像中所对应的像素距离之间的比例关系。在视觉SLAM中,尺度是一个非常重要的概念,因为它决定了相机观
- 第一个项目总结:双目测距(python代码转为c++代码,最终输出点云图,再转为ros点云图,再实现可视化)
zerogin+
c++opencv开发语言
目录1.双目成像原理2.双目测距python代码3.python代码转为c++代码(1)双目相机参数(2)立体校正(3)立体匹配4.opencv的点云图转为ros点云图1.双目成像原理摘自《视觉SLAM十四讲》2.双目测距python代码(46条消息)双目测距理论及其python实现_python双目测距_javastart的博客-CSDN博客具体过程为:双目标定-->立体校正(含消除畸变)-->
- SLAM中的二进制词袋生成过程和工作原理
深蓝学院
机器学习人工智能
长期视觉SLAM(SimultaneousLocalizationandMapping)最重要的要求之一是鲁棒的位置识别。经过一段探索期后,当长时间未观测到的区域重新观测时,标准匹配算法失效。当它们被健壮地检测到时,回环检测提供正确的数据关联以获得一致的地图。用于环路检测的相同方法可用于机器人在轨迹丢失后的重新定位,例如由于突然运动,严重闭塞或运动模糊。词袋的基本技术包括从机器人在线收集的图像中建
- 【视觉SLAM十四讲学习笔记】第五讲——相机模型
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- 2023-01-04日志
独孤西
今天学习了惯导的一节课与视觉SLAM视觉里程计的部分知识。惯性导航方面,主要学习了加速度计和陀螺的基本实现原理,了解了不同类型的惯性传感器,区分ISA、IMU、INS,知道了平台式与捷联式的区别,对惯导的精度等级分类也有了了解,并对惯导发展历史进行了学习。视觉里程计方面,主要学习了ORB特征点法的工作原理,了解了对极几何的原理,对视觉里程计的2D-2D估计过程有了更全面的了解。视觉SLAM的数学原
- 视觉SLAM十四讲|【五】相机与IMU时间戳同步
影子鱼Alexios
机器人机器学习
视觉SLAM十四讲|【五】相机与IMU时间戳同步相机成像方程Z[uv1]=[fx0cx0fycy001][XYZ]=KPZ\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_x&0&c_x\\0&f_y&c_y\\0&0&1\end{bmatrix}\begin{bmatrix}X\\Y\\Z\end{bmatrix}=KPZuv1=fx000
- 视觉SALM与激光SLAM的区别
Jiqiang_z
LOAM系列阅读笔记SLAM学习笔记机器学习人工智能深度学习
前言:这里比较一下视觉SLAM和激光SLAM的区别,仅比较其在算法层面上的一些不同,这里拿视觉SLAM算法:ORB-SLAM系列和激光SLAM算法:LOAM系列对比。一:特征提取1.ORB-SLAM(视觉SLAM)ORB-SLAM算法采用ORB特征点,ORB特征点一般提取在角点上面,每一个ORB特征点具有以下信息:位置信息:该ORB特征点所在的图像像素坐标。描述子信息:用来描述该特征点的周围信息。
- 视觉SLAM和激光SLAM适合的应用领域以及哪个更有前景
稻壳特筑
SLAMSLAM
目录视觉SLAM的应用领域激光SLAM的应用领域视觉SLAM优势和局限性激光SLAM优势和局限性发展趋势和前景视觉SLAM的应用领域增强现实(AR)和虚拟现实(VR):视觉SLAM能够提供丰富的视觉信息,有助于在现实世界中叠加虚拟图像,适用于AR眼镜和VR头显。消费电子产品:在智能手机、平板电脑等设备上,视觉SLAM可以用于室内导航、三维建模和交互游戏。机器人:小型或成本敏感的机器人,如家用清洁机
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc