rank(A)=rank(A^TA)

UTF8gbsn

本文简要证明命题 r a n k ( A A T ) = r a n k ( A T A ) = r a n k ( A ) rank(\mathbf{AA^T})=rank(\mathbf{A^TA})=rank(\mathbf{A}) rank(AAT)=rank(ATA)=rank(A),
此证明分为两步来完成.

r a n k ( A A T ) = r a n k ( A T A ) rank(\mathbf{AA^T})=rank(\mathbf{A^TA}) rank(AAT)=rank(ATA)

  • 首先, C = A A T \mathbf{C}=\mathbf{AA^T} C=AAT.
    那么我们可以看到. C T = r a n k ( A T A ) \mathbf{C^T}=rank(\mathbf{A^TA}) CT=rank(ATA).

  • 根据矩阵转置不改变矩阵的秩可得.
    r a n k ( A A T ) = r a n k ( A T A ) rank(\mathbf{AA^T})=rank(\mathbf{A^TA}) rank(AAT)=rank(ATA)

接下来证明 r a n k ( A T A ) = r a n k ( A ) rank(\mathbf{A^TA})=rank(\mathbf{A}) rank(ATA)=rank(A).

r a n k ( A T A ) = r a n k ( A ) rank(\mathbf{A^TA})=rank(\mathbf{A}) rank(ATA)=rank(A)

本轮的证明分为两步走, 先看第一步.

  • Nullspace of A A A included by nullspace of A T A A^{T}A ATA.
    ∀ x , A x = 0 ⇒ A T A x = 0 \forall \mathbf{x}, A\mathbf{x}=0 \Rightarrow A^TA\mathbf{x}=0 x,Ax=0ATAx=0
    which means that N u l l s p a c e ( A ) ⊆ N u l l s p a c e ( A T A ) Nullspace(A)\subseteq Nullspace(A^TA) Nullspace(A)Nullspace(ATA)

  • Nullspace of A T A A^TA ATA include by nullspace of A A A
    ∀ x , A T A x = 0 ⇒ x T A T A x = 0 ⇒ A x = 0 \forall \mathbf{x}, A^TA\mathbf{x}=0 \Rightarrow \mathbf{x^T}A^{T}A\mathbf{x}=0 \Rightarrow A\mathbf{x}=0 x,ATAx=0xTATAx=0Ax=0
    which means that N u l l s p a c e ( A T A ) ⊆ N u l l s p a c e ( A ) Nullspace(A^TA)\subseteq Nullspace(A) Nullspace(ATA)Nullspace(A).

  • Finally, we get N u l l s p a c e ( A ) = N u l l s p a c e ( A A T ) Nullspace(A)=Nullspace(AA^T) Nullspace(A)=Nullspace(AAT).

再来看第二步.

  • Assuming that A A A is a m × n m\times n m×n matrix and we can get that A T A A^TA ATA
    is a n × n n\times n n×n matrix.

  • Now, we have reached the final step.
    r a n k ( A ) + r a n k ( N u l l s p a c e ( A ) ) = n rank(A)+rank(Nullspace(A))=n rank(A)+rank(Nullspace(A))=n
    r a n k ( A T A ) + r a n k ( N u l l s p a c e ( A T A ) ) = n rank(A^TA)+rank(Nullspace(A^TA))=n rank(ATA)+rank(Nullspace(ATA))=n

  • At last, we get r a n k ( A ) = r a n k ( A T A ) rank(A)=rank(A^TA) rank(A)=rank(ATA)

你可能感兴趣的:(高等代数)